K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2016

\(\frac{a}{b}+\frac{b}{a}=\frac{a^2}{ab}+\frac{b^2}{ab}=\frac{a^2+b^2}{ab}\ge2\)

Vậy Min A = 2 \(\Leftrightarrow a=b\)

20 tháng 2 2019

Ta có: 

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow b=\frac{2}{\frac{1}{a}+\frac{1}{c}}=\frac{2ac}{a+c}\)

Thế \(b=\frac{2ac}{a+c}\) vào M, ta được:

 \(M=\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}=\frac{1+\frac{2c}{a+c}}{2-\frac{2c}{a+c}}+\frac{1+\frac{2a}{a+c}}{2-\frac{2a}{a+c}}\)

\(M=\frac{\left(a+c\right)+2c}{2\left(a+c\right)-2c}+\frac{\left(a+c\right)+2a}{2\left(a+c\right)-2a}=\frac{a+3c}{2a}+\frac{3a+c}{2c}\)

\(M+2=\frac{a+3c}{2a}+1+\frac{3a+c}{2c}+1=\frac{3a+3c}{2a}+\frac{3a+3c}{2c}=\frac{3}{2}\left(a+c\right)\left(\frac{1}{a}+\frac{1}{c}\right)\)

\(M+2=\frac{3}{2}\left(1+\frac{a}{c}+\frac{c}{a}+1\right)=\frac{3}{2}\left(2+\frac{a}{c}+\frac{c}{a}\right)\)

Xét \(\frac{a}{c}+\frac{c}{a}\ge2\Leftrightarrow...\)(bạn tự biến đổi tương đương để chứng minh nó nhé)

(ĐK xảy ra dấu "=": a=c)

Do đó \(M+2=\frac{3}{2}\left(1+\frac{a}{c}+\frac{c}{a}+1\right)=\frac{3}{2}\left(2+\frac{a}{c}+\frac{c}{a}\right)\ge\frac{3}{2}\left(2+2\right)=6\Leftrightarrow M\ge4\)

Vậy GTNN của \(M=4\)khi \(a=c\Leftrightarrow\frac{2}{b}=\frac{2}{a}\Leftrightarrow b=a=c\)

Chúc bạn học tốt!

P/S: bài này khó thật đấy! Mình chuyên toán 9 mà giải hết nửa tiếng mới xong :D!

22 tháng 3 2016

B=1^8trên1^2

22 tháng 3 2016

\(\frac{1}{12}\)

B1 

Ta có

\(A=\frac{a^2}{24}+\frac{9}{a}+\frac{9}{a}+\frac{23a^2}{24}\ge3\sqrt[3]{\frac{a^2}{24}.\frac{9}{a}.\frac{9}{a}+\frac{23a^2}{24}}\ge\frac{9}{2}+\frac{23.36}{24}\ge39\)

Dấu "=" xảy ra <=> a=6

Vậy Min A = 39 <=> a=6

4 tháng 10 2020

 \(A=a^2+\frac{18}{a}=a^2+\frac{216}{a}+\frac{216}{a}-\frac{414}{a}\ge3\sqrt[3]{a^2.\frac{216}{a}.\frac{216}{a}}-69=39\)

Đẳng thức xảy ra khi a = 6

19 tháng 7 2021

\(P=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2a+2b+2c}\)(cô si)

\(P\ge\frac{6^2}{2.6}=3\)dấu "=" xảy ra khi và chỉ khi \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)

vậy dấu "=" xảy ra khi \(a=b=c=1\)

\(< =>MIN:P=3\)

19 tháng 7 2021

Hoàng Như Quỳnh đấy có phải cô si đâu ? Bunya phân thức mà ~~

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có : ... ( như bạn Hoàng Như Quỳnh ) 

Dấu "=" xảy ra <=> a = b = c = 2

21 tháng 8 2019

Dạng này nhìn mệt vãi:(

Do b > 0 nên chia hai vế của giả thiết cho b, ta được: \(a+\frac{2}{b}\le1\)

Bây giờ đặt \(a=x;\frac{2}{b}=y\). Bài toán trở thành:

Cho x, y là các số dương thỏa mãn \(x+y\le1\). Tìm Min:

\(P=x+y+\frac{1}{x^2}+\frac{8}{y^2}\). Quen thuộc chưa:v

Ko biết có tính sai chỗ nào không, nhưng hướng làm là vậy đó!

20 tháng 8 2023

hay bạn ơi

 

1 tháng 12 2019

Dự đoán điểm rơi \(a=b=c=\frac{1}{3}\)

Khi đó:

\(S=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(=\left(a+b+c+\frac{1}{9a}+\frac{1}{9b}+\frac{1}{9c}\right)+8\left(\frac{1}{9a}+\frac{1}{9b}+\frac{1}{9c}\right)\)

\(\ge6\sqrt[6]{a\cdot b\cdot c\cdot\frac{1}{9a}\cdot\frac{1}{9b}\cdot\frac{1}{9c}}+24\sqrt[3]{\frac{1}{9a}\cdot\frac{1}{9b}\cdot\frac{1}{9c}}\)

\(=2+\frac{8}{3}\cdot\frac{1}{\sqrt[3]{abc}}\ge2+\frac{8}{3}\cdot\frac{1}{\frac{a+b+c}{3}}\ge10\)

2 tháng 12 2019

Mù mắt với AM-GM cho 10 số:v

\(S=\left(a+b+c\right)+9\left(\frac{1}{9a}+\frac{1}{9b}+\frac{1}{9c}\right)\)\(\ge10\sqrt[10]{\left(a+b+c\right)\left(\frac{1}{9a}+\frac{1}{9b}+\frac{1}{9c}\right)^9}\)\(\ge10\sqrt[10]{\left(3\sqrt[3]{abc}\right)\left[3\sqrt[3]{\frac{1}{9^3abc}}\right]^9}=10\sqrt[10]{\left(3\sqrt[3]{abc}\right).\left[3^9\left(\frac{1}{9^3abc}\right)^3\right]}\)

\(=10\sqrt[10]{3^{10}.\frac{\sqrt[3]{abc}}{\left(3^6abc\right)^3}}=10\sqrt[10]{\frac{1}{3^8\sqrt[3]{\left(abc\right)^8}}}\ge10\sqrt[10]{\frac{1}{3^8\sqrt[3]{\left[\frac{\left(a+b+c\right)^3}{27}\right]^8}}}\ge10\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Vậy.....

AH
Akai Haruma
Giáo viên
11 tháng 5 2019

Lời giải:
Vì $abc=1$ nên:

\((a+bc)(b+ac)(c+ab)=a(a+bc)b(b+ac)c(c+ab)=(a^2+1)(b^2+1)(c^2+1)\)

Áp dụng BĐT Bunhiacopxky:

\((a^2+1)(1+b^2)\geq (a+b)^2; (a^2+1)(1+c^2)\geq (a+c)^2; (b^2+1)(1+c^2)\geq (b+c)^2\)

Nhân theo vế và thu gọn:

\(\Rightarrow (a^2+1)(b^2+1)(c^2+1)\geq (a+b)(b+c)(c+a)\)

Lại có: Theo BĐT AM-GM thì:

\((a+b)(b+c)(c+a)=(ab+bc+ac)(a+b+c)-abc\)

\(\geq (ab+bc+ac)(a+b+c)-\frac{(a+b+c)(ab+bc+ac)}{9}=\frac{8(a+b+c)(ab+bc+ac)}{9}(*)\) (đây là BĐT khá quen thuộc rồi)

Do đó:

\(P=\frac{(a+bc)(b+ca)(c+ab)}{ab+bc+ac}+\frac{1}{a+b+c}=\frac{(a^2+1)(b^2+1)(c^2+1)}{ab+bc+ac}+\frac{1}{a+b+c}\geq \frac{(a+b)(b+c)(c+a)}{ab+bc+ac}+\frac{1}{a+b+c}\)

\(P\geq \frac{7(a+b)(b+c)(c+a)}{8(ab+bc+ac)}+\frac{(a+b)(b+c)(c+a)}{8(ab+bc+ac)}+\frac{1}{a+b+c}\)

Áp dụng BĐT (*) và AM-GM:

\(\frac{7(a+b)(b+c)(c+a)}{8(ab+bc+ac)}\geq 7.\frac{\frac{8}{9}(a+b+c)(ab+bc+ac)}{8(ab+bc+ac)}=\frac{7}{9}(a+b+c)\geq \frac{7}{9}.3\sqrt[3]{abc}=\frac{7}{3}\)

\(\frac{(a+b)(b+c)(c+a)}{8(ab+bc+ac)}+\frac{1}{a+b+c}\geq 2\sqrt{\frac{(a+b)(b+c)(c+a)}{8(ab+bc+ac)(a+b+c)}}\geq 2\sqrt{\frac{\frac{8}{9}(a+b+c)(ab+bc+ac)}{8(a+b+c)(ab+bc+ac)}}=\frac{2}{3}\)

\(\Rightarrow P\geq \frac{7}{3}+\frac{2}{3}=3\)

Vậy $P_{\min}=3$

12 tháng 5 2019

\(\left(a+bc\right)\left(b+ca\right)\left(c+ab\right)\)

\(=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2+1+1\)

\(=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2+1+1+1-1\)

Áp dụng BĐT AM-GM ta có:

\(\left(a+bc\right)\left(b+ca\right)\left(c+ab\right)\ge a^2+b^2+c^2+2ab+2bc+2ac-1=\left(a+b+c\right)^2-1\)\(\Rightarrow P\ge\frac{\left(a+b+c\right)^2-1}{ab+bc+ca}+\frac{1}{a+b+c}\)

Dấu " = " xảy ra <=> ...

Ta có: \(\frac{1}{3}.\left(a+b+c\right)^2\ge ab+bc+ca\)( BĐT quen thuộc tự c/m)

\(\Rightarrow P\ge\frac{\left(a+b+c\right)^2-1}{ab+bc+ca}+\frac{1}{a+b+c}\ge\frac{\left(a+b+c\right)^2}{\frac{1}{3}\left(a+b+c\right)^2}-\frac{1}{\frac{1}{3}\left(a+b+c\right)}+\frac{1}{a+b+c}\)\(=3+\frac{a+b+c-3}{\left(a+b+c\right)^2}\)

Ta có: \(abc=1\Leftrightarrow\sqrt[3]{abc}=1\le\frac{a+b+c}{3}\left(AM-GM\right)\)

\(\Rightarrow a+b+c\ge3\)

Dấu " = " xảy ra <=> ...

\(\Rightarrow P\ge3+\frac{a+b+c-3}{\left(a+b+c\right)^2}\ge3\)

Dấu " = " xảy ra <=> a=b=c=1

KL:...........