\(a^{100}+b^{100}=a^{101}+b^{101}=a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

mình mới học lớp 5

tk nhé@@@@@@@@@@@@@@@@

hihi

LOL

Liên MIh hay s mà LOL?

14 tháng 4 2017

a100 + b100 = a101 + b101

=>a101-a100+b101-b100=0

=>a100(a-1)+b100(b-1)=0      (#)

Nếu a và b cùng lớn hơn 1 thì: a-1 và b-1 đều là số dương nên:

a100(a-1)+b100(b-1)>0

không đúng với (#).

Nếu a và b cùng nhỏ hơn 1 thì: a-1 và b-1 đều là số âm nên:

a100(a-1)+b100(b-1)<0

không đúng với (#).

Nếu a và b có một số lớn hơn hoặc bằng 1 và 1 số nhỏ hơn hoặc bằng 1. Không mất tính tổng quát ta xét: a1 và b1.

Ta có:

a100(a-1)+b100(b-1)=0

=>a100(a-1)=b100(1-b)   (*)

Lại có:

a101 + b101 = a102 + b102

=> a102 –a101+ b102-b101=0

=>a101(a-1)+b101(b-1)=0

=>a.a100(a-1)+b.b100(b-1)=0

=>a. a100(a-1)- b.b100(1-b)=0

=> a. a100(a-1)- b. a100(a-1)=0   (do (*) )

=> a100(a-1)(a-b)=0

=>

=>

Với a=1 thay vào (*) ta được:

0=b100(b-1)

=>b=1    (vì b>0.)

Với a=b thay vào 1 ta được:

a100(a-1)=a100(1-a)  

=>a-1=1-a

=>2a=2

=>a=1 =>b=1

Vậy a=b=1 trong mọi trường hợp.

\(\Rightarrow\)\(P=1^{2014}+1^{2015}=1+1=2\)

25 tháng 11 2017

a100 + b100 = a101 + b101

=>a101-a100+b101-b100=0

=>a100(a-1)+b100(b-1)=0      (#)

Nếu a và b cùng lớn hơn 1 thì: a-1 và b-1 đều là số dương nên:

a100(a-1)+b100(b-1)>0

không đúng với (#).

Nếu a và b cùng nhỏ hơn 1 thì: a-1 và b-1 đều là số âm nên:

a100(a-1)+b100(b-1)<0

không đúng với (#).

Nếu a và b có một số lớn hơn hoặc bằng 1 và 1 số nhỏ hơn hoặc bằng 1. Không mất tính tổng quát ta xét: a1 và b1.

Ta có:

a100(a-1)+b100(b-1)=0

=>a100(a-1)=b100(1-b)   (*)

Lại có:

a101 + b101 = a102 + b102

=> a102 –a101+ b102-b101=0

=>a101(a-1)+b101(b-1)=0

=>a.a100(a-1)+b.b100(b-1)=0

=>a. a100(a-1)- b.b100(1-b)=0

=> a. a100(a-1)- b. a100(a-1)=0   (do (*) )

=> a100(a-1)(a-b)=0

=>

=>

Với a=1 thay vào (*) ta được:

0=b100(b-1)

=>b=1    (vì b>0.)

Với a=b thay vào 1 ta được:

a100(a-1)=a100(1-a)  

=>a-1=1-a

=>2a=2

=>a=1 =>b=1

Vậy a=b=1 trong mọi trường hợp.

6 tháng 4 2017

\(a^{100}+b^{100}=a^{101}+b^{101}\)

\(\Rightarrow a^{101}-a^{100}+b^{101}-b^{100}=0\)

\(\Rightarrow a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\left(1\right)\)

*)Nếu a và b cùng lớn hơn 1 thì: a-1 và b-1 đều dương nên:

\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)>0\) không đúng với \(\left(1\right)\)

*)Nếu a và b cùng nhỏ hơn 1 thì: a-1 và b-1 đều âm nên:

\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)< 0\) không đúng với \(\left(1\right)\)

*)Nếu a và b có 1 số lớn hơn hoặc bằng 1 và 1 số nhỏ hơn hoặc bằng 1

Không mất tính tổng quát, giả sử \(a\ge1;b\le1\)

Ta có:

\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\)

\(\Rightarrow a^{100}\left(a-1\right)=b^{100}\left(b-1\right)\left(2\right)\)

Lại có:

\(a^{101}+b^{101}=a^{102}+b^{102}\)

\(\Rightarrow a^{102}-a^{101}+b^{102}-b^{101}=0\)

\(\Rightarrow a^{101}\left(a-1\right)+b^{101}\left(b-1\right)=0\)

\(\Rightarrow a\cdot a^{100}\left(a-1\right)+b\cdot b^{100}\left(b-1\right)=0\)

\(\Rightarrow a\cdot a^{100}\left(a-1\right)-b\cdot b^{100}\left(b-1\right)=0\)

\(\Rightarrow a\cdot a^{100}\left(a-1\right)-b\cdot a^{100}\left(a-1\right)=0\) (theo (2))

\(\Rightarrow a^{100}\left(a-1\right)\left(a-b\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}a-1=0\\a-b=0\end{matrix}\right.\) (do \(a>0\))

\(\Rightarrow a=b=1\Rightarrow P=1^{2014}+1^{2014}=2\)

6 tháng 4 2017

Thắng à?

14 tháng 8 2017

tìm trên mạng kỹ càng trước nha bn

5 tháng 4 2017

Ta có:

\(0=a^{100}+b^{100}-\left(a^{101}+b^{101}\right)\)

\(=a^{101}+b^{101}-\left(a^{102}+b^{102}\right)\)

\(\Rightarrow a^{100}\left(1-a\right)+b^{100}\left(1-b\right)\)

\(=a^{101}\left(1-a\right)+b^{101}\left(1-b\right)\)

\(\Rightarrow a^{100}\left(1-a\right)^2+b^{100}\left(1-b\right)^2=0\)

\(\Rightarrow a=b=1\)

Thay \(a=b=1\) vào biểu thức ta được:

\(P=a^{2014}+b^{2015}=1^{2014}+1^{2015}\)

\(=1+1=2\)

Vậy \(P=2\)

21 tháng 3 2018

a và b cũng có thể bằng 0 mà

19 tháng 6 2019

a) Giả sử không có 2 số nào bằng nhau trong các số nguyên dương đẫ cho.

Không mất tính tổng quát ta giả sử: \(a1< a2< a3< a4< ...< a100\)

Nên : \(a1\ge1;a2\ge2;a3\ge3;...;a100\ge100\)

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

Mặt khác, ta có : \(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}< \frac{1}{1}+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+99.\frac{1}{2}=\frac{101}{2}\)

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}< \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)có 99 phân số 1/2 )

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}< \frac{101}{2}\)trái với đề bài ra là \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\ge\frac{101}{2}\)

Vậy tồn tại trong 100 số đã cho ít nhất 2 số bằng nhau ( điều phải chứng minh ).

b) Giả sử trong 100 số trên chỉ tồn tại 2 số bằng nhau ( đã chứng minh 2 số bằng nhau ở phần a)

Không mất tính tổng quát, ta giả sử: 

19 tháng 6 2019

b) Làm tiếp : Giả sử a1=a2.

Nên : \(a1=a2>a3>a4>...>a100\)( áp dụng theo phần a)

\(\Rightarrow a1=a2\ge1;a3\ge2;a4\ge3;...;a100\ge99\)

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le\frac{2}{a1}+\frac{1}{a3}+...+\frac{1}{a100}=\frac{2}{1}+\frac{1}{2}+...+\frac{1}{99}\)

Mặt khác, ta có :\(\frac{2}{1}+\frac{1}{2}+...+\frac{1}{99}< 2+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}=\frac{5}{2}+\frac{97}{3}=\frac{209}{6}\)

\(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}< \frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}\)có 97 phân số 1/3 )

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}< \frac{209}{6}< \frac{303}{6}=\frac{101}{2}\)trái với đề bài

Tương tự giả sử lấy bất kỳ 2 số bằng nhau khác tổng \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\)vẫn nhỏ hơn 101/2

Vậy tồn tại trong 100 số đã cho có ít nhất 3 số bằng nhau ( điều phải chứng minh).