Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)
bài 2
(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi
Giả sử ngược lại \(a^2+b^2+c^2< abc\)
khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)
Tương tự \(b< ac,c< ab\)
Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)
mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên
\(abc>a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow abc>ab+ac+bc\left(2\right)\)
Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)
Vậy bài toán được chứng minh
3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)
và \(xy+yz+xz\ge1\)
ta phải chứng minh có ít nhất hai trong ba bất đẳng thức sau đúng
\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)
Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử
\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)
Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)
Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)
\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó
\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)
\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)
\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)
mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.
Sửa đề: Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng
\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)
Áp dụng bđt Cauchy-Schwarz ta có:
\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)
Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)
\(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)
Cộng từng vế các bđt trên ta được
\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)
Vậy bđt được chứng minh
Dấu "=" xảy ra khi a=b=c=1
\(\frac{1}{2a-1}+\frac{1}{1}\ge\frac{4}{2a}=\frac{2}{a}\) ; \(\frac{1}{2b-1}+\frac{1}{1}\ge\frac{2}{b}\) ; \(\frac{1}{2c-1}+\frac{1}{1}\ge\frac{2}{c}\)
\(\Rightarrow VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(\Rightarrow VT\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m
Vì \(abc=1\)nên trong 3 số a,b,c luôn có 2 số nằm cùng phía so với 1.
Không mất tính tổng quát ta giả sử 2 số đó là a và b, khi đó ta có:
\(\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow a+b\le1+ab=\frac{c+1}{c}\)
Do đó ta được:
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(1+a+b+ab\right)\left(c+1\right)\)
\(=2\left(1+ab\right)\left(1+c\right)\le\frac{2\left(c+1\right)^2}{c}\)
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}\ge\frac{1}{\left(1+ab\right)\left(1+\frac{a}{b}\right)}+\frac{1}{\left(1+ab\right)\left(1+\frac{b}{a}\right)}\)
\(=\frac{b}{\left(1+ab\right)\left(a+b\right)}+\frac{a}{\left(1+ab\right)\left(a+b\right)}=\frac{1}{1+ab}=\frac{c}{c+1}\)
Do đó ta được:
\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+c\right)^2}+\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\ge\frac{c}{c+1}+\frac{1}{\left(c+1\right)^2}+\frac{c}{\left(c+1\right)^2}=\frac{c\left(c+1\right)+1+c}{\left(c+1\right)^2}=1\)
Như vậy bất đẳng thức ban đầu được chứng minh. Đẳng thức xẩy ra khi \(a=b=c=1\).
Lời giải:
Ta nhớ đến 1 BĐT quen thuộc:
Với $x,y$ là số thực thỏa mãn $x,y\geq 1$ thì $\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}$
(Việc chứng minh BĐT trên có thể dựa vào biến đổi tương đương)
-------------------------------------------------
Áp dụng vào bài toán:
\(\frac{1}{a^3+1}+\frac{1}{b^3+1}\geq \frac{2}{\sqrt{a^3b^3}+1}(1)\)
\(\frac{1}{c^3+1}+\frac{1}{abc+1}\geq \frac{2}{\sqrt[2]{c^4ab}+1}(2)\)
\(\frac{1}{\sqrt{a^3b^3}+1}+\frac{1}{\sqrt{c^4ab}+1}=\frac{1}{[(ab)^{\frac{3}{4}}]^2+1}+\frac{1}{[c(ab)^{\frac{1}{4}})]^2+1}\geq \frac{2}{(ab)^{\frac{3}{4}}.c(ab)^{\frac{1}{4}}+1}=\frac{2}{abc+1}(3)\)
Từ \((1);(2);(3)\Rightarrow \frac{1}{a^3+1}+\frac{1}{b^3+1}+\frac{1}{c^3+1}+\frac{1}{abc+1}\geq \frac{4}{abc+1}\)
\(\Rightarrow \frac{1}{a^3+1}+\frac{1}{b^3+1}+\frac{1}{c^3+1}\geq \frac{3}{abc+1}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Ta chứng minh bất đẳng thức phụ
\(\frac{1}{8x^2+1}\ge\frac{2}{x+1}-1\)
\(\Leftrightarrow4x^3-4x^2+x\ge0\)
\(\Leftrightarrow x\left(2x-1\right)^2\ge0\)(đúng)
Áp dụng vào bài toán ta được
\(\frac{1}{8a^2+1}+\frac{1}{8b^2+1}+\frac{1}{8c^2+1}\ge-1+\frac{2}{a+1}-1+\frac{2}{b+1}-1+\frac{2}{c+1}\)
\(=-3+2\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)=-3+4=1\)
Ta có: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)
\(\Rightarrow3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)=1\)
\(\Rightarrow\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=1\)
Xét BĐT \(\Sigma_{cyc}\frac{1}{8a^2+1}\ge1\Leftrightarrow3-\Sigma_{cyc}\frac{1}{8a^2+1}\le2\)
\(\Leftrightarrow\Sigma_{cyc}\frac{8a^2}{8a^2+1}\le2\Leftrightarrow\Sigma_{cyc}\frac{4a^2}{8a^2+1}\le2\)
Xét BĐT phụ: \(\frac{4x^2}{8x^2+1}\le\frac{x}{x+1}\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{x\left(2x-1\right)^2}{\left(x+1\right)\left(8x^2+1\right)}\)(đúng với mọi x thực dương)
Áp dụng, ta có: \(\Sigma_{cyc}\frac{4a^2}{8a^2+1}\le\text{}\Sigma_{cyc}\frac{a}{a+1}=1\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)