Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(2019-\left|x-2019\right|=x\)
\(\Rightarrow2019-x=\left|x-2019\right|\)
=>\(\left|x-2019\right|=-\left(x-2019\right)\)
=>\(x-2019\le0\)
=>\(x\le2019\)
b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)
\(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)
\(\left|x+y-z\right|\ge0\forall x,y,z\)
=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)
mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)
a, Ta có:
\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)
Xét x<2019 thì |x-2019|=-x+2019
Khi đó: 2019-(-x+2019)=x
\(\Leftrightarrow\)-x+2019=2019-x
\(\Leftrightarrow\)-x+2019+x=2019
\(\Leftrightarrow\)0x+2019=2019
\(\Leftrightarrow\)0x=0 (thỏa mãn)
Xét 2019\(\le\)x thì |x-2019|=x-2019
Khi đó 2019-(x-2019)=x
\(\Leftrightarrow\)2019-x+2019=x
\(\Leftrightarrow\)4038-x=x
\(\Leftrightarrow\)4038=2x
\(\Leftrightarrow\)x=2019(thỏa mãn)
Vậy .......................................................!!!
Bài 1:
Ta có: \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\) và x,y,z≠0
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
Do đó:
\(\left\{{}\begin{matrix}\frac{x}{y}=1\\\frac{y}{z}=1\\\frac{z}{x}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\Leftrightarrow x=y=z\)
Ta có: \(x^{2018}-y^{2019}=0\)
mà x=y(cmt)
nên \(x^{2018}-x^{2019}=0\)
\(\Leftrightarrow x^{2018}\left(1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^{2018}=0\\1-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=1\end{matrix}\right.\)
Vậy: x=y=z=1
Bài 2:
Ta có: \(\left(x+5\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x+5\right)^2\le0\forall x\)
Ta có: \(\left|x-y+1\right|\ge0\forall x,y\)
\(\Rightarrow-\left|x-y+1\right|\le0\forall x,y\)
Do đó: \(-\left(x+5\right)^2-\left|x-y+1\right|\le0\forall x,y\)
\(\Rightarrow-\left(x+5\right)^2-\left|x-y+1\right|+2018\le2018\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x+5\right)^2=0\\\left|x-y+1\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\x-y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\-5-y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\-4-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=-4\end{matrix}\right.\)
Vậy: Giá trị lớn nhất của biểu thức \(P=-\left(x+5\right)^2-\left|x-y+1\right|+2018\) là 2018 khi x=-5 và y=-4
a) \(\left|x+\frac{13}{17}\right|+\left|y+\frac{2019}{2018}\right|+\left|z-2007\right|=0\)
Ta có:
\(\left\{{}\begin{matrix}\left|x+\frac{13}{17}\right|\ge0\\\left|y+\frac{2019}{2018}\right|\ge0\\\left|z-2007\right|\ge0\end{matrix}\right.\forall x,y,z.\)
\(\Rightarrow\left|x+\frac{13}{17}\right|+\left|y+\frac{2019}{2018}\right|+\left|z-2007\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+\frac{13}{17}=0\\y+\frac{2019}{2018}=0\\z-2007=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0-\frac{13}{17}\\y=0-\frac{2019}{2018}\\z=0+2007\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{13}{17}\\y=-\frac{2019}{2018}\\z=2007\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)\in\left\{-\frac{13}{17};-\frac{2019}{2018};2007\right\}.\)
Chúc bạn học tốt!