\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}.\) Chứng minh rằng:...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

theo bài ra ta có:

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\\ \Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}=\dfrac{2ab}{2cd}\)

áp dụng tính chất dãy tỉ số bàng nhau ta có:

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}=\dfrac{2ab}{2cd}=\dfrac{a^2+b^2+2ab}{c^2+d^2+2cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}\\ \Rightarrow\dfrac{c\left(a+b\right)}{a\left(c+d\right)}=\dfrac{b\left(c+d\right)}{d\left(a+b\right)}\\ \Rightarrow\dfrac{ca+cb}{ca+ad}=\dfrac{bc+bd}{ad+bd}\)áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{ca+cb}{ca+ad}=\dfrac{bc+bd}{ad+bd}=\dfrac{\left(ca+cb\right)-\left(bc+bd\right)}{\left(ca+ad\right)-\left(ad+bd\right)}=\dfrac{ca-bd}{ca-bd}=1\\ \Rightarrow ca+cb=ca+ad\\ \Rightarrow cb=ad\\ \Rightarrow ad=bc\left(đpcm\right)\)

11 tháng 12 2022

a; Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)

b: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)

Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

c: \(\dfrac{7a^2-3ab}{11a^2-8b^2}=\dfrac{7b^2k^2-3\cdot bk\cdot b}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2-3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2-3k}{11k^2-8}\)

\(\dfrac{7c^2-3cd}{11c^2-8d^2}=\dfrac{7d^2k^2-3kd^2}{11d^2k^2-8d^2}=\dfrac{7k^2-3k}{11k^2-8}\)

Do đó: \(\dfrac{7a^2-3ab}{11a^2-8b^2}=\dfrac{7c^2-3cd}{11c^2-8d^2}\)

13 tháng 11 2017

ta có \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\Rightarrow ab.\left(c^2+d^2\right)=cd.\left(a^2+b^2\right)\)

suy ra \(ab.\left(c^2+d^2\right)\)=\(abc^2+abd^2=acbc+adbd\) (1)

\(cd\left(a^2+b^2\right)=a^2cd+b^2cd+bcbd\) =acad+bcbd (2)

(1);(2) suy ra acbc+adbd=acad+bcbd

nên bc+ad=bc+ad

suy ra ad=bc nên \(\dfrac{a}{b}=\dfrac{c}{d}\)

1 tháng 11 2017

Ta đặt : a/b = c/d = K ( K khác 0 )

=> a = b.K

c = d.K

Mà : a2 + b2 / c2 + d2 = b.K2 + b2 / d.K2 + d2

= b2 . ( K2 + 1 ) / d2 . ( K2 + 1 )

= b2 / d2 ( 1 )

Mà : ab/cd = b.K.b / d.K.d = b2 . K / d2 . K

= b2 / d2 ( 2 )

Từ ( 1 ) và ( 2 ) suy ra : a/b =c/d ( ĐPCM )

30 tháng 12 2017

Hỏi đáp Toán

11 tháng 8 2017

Ta có :\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)

\(\Leftrightarrow cd\left(a^2+b^2\right)=ab\left(c^2+d^2\right)\)

\(\Leftrightarrow a^2cd+b^2cd=c^2ab+d^2ab\)

\(\Leftrightarrow\left(a^2cd+b^2cd\right)-\left(c^2ab+d^2ab\right)=0\)

\(\Leftrightarrow aacd+bbcd-ccab-ddab=0\)(tất cả là dấu nhân ko phải số tự nhiên có 4 chữ số nha)

\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)

\(\Leftrightarrow\left(ad-bc\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}ad-bc=0\\ac-bd=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}ad=bc\\ac=bd\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{d}{c}\\\dfrac{a}{b}=\dfrac{c}{d}\end{matrix}\right.\left(\text{đ}pcm\right)\)

22 tháng 10 2017

bn ơi cho mk hỏi ac vói bd rút gọn kiểu gì mà nó mất đc

28 tháng 9 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

a, Ta có: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{bk.b}{dk.d}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\)

\(\Rightarrow\dfrac{b^2.k}{d^2.k}=\dfrac{\left[b.\left(k+1\right)\right]^2}{\left[d.\left(k+1\right)\right]^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\) \(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

b, Ta có:\(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{bk.b}{dk.d}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}\)

\(\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2.k^2+b^2}{d^2.k^2+d^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}\)

\(\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\Rightarrow\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)

CHÚC BẠN HỌC TỐT!!

28 tháng 9 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\)=>\(\dfrac{a}{c}=\dfrac{b}{d}\)( áp dụng tỉ lệ thức )

Ta đặt:

\(\dfrac{a}{c}=\dfrac{b}{d}=k\) => a=ck ; b=dk

a) \(\dfrac{ab}{cd}=\dfrac{ck.dk}{cd}=\dfrac{k^2.\left(c.d\right)}{c.d}=k^2\) (1)

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(ck+dk\right)^2}{\left(c+d\right)^2}=\dfrac{k^2.\left(c+d\right)^2}{\left(c+d\right)^2}=k^2\) (2)

Từ (1) và (2) suy ra \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

b) \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(ck\right)^2+\left(dk\right)^2}{c^2+d^2}=\dfrac{c^2k^2+d^2k^2}{c^2+d^2}=\dfrac{k^2.\left(c^2+d^2\right)}{c^2+d^2}=k^2\) (3)

Từ (1) và (3) suy ra \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)

2 tháng 11 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\left(1\right)\)

Thay (1) vào từng vế của đề bài:

\(VT=\dfrac{a^2+ac}{c^2-ac}=\dfrac{bk\left(bk+dk\right)}{dk\left(dk-bk\right)}=\dfrac{b\left(b+d\right)}{d\left(d-b\right)}\)

Vế phải đặt thừa số chung sẽ ra VT => đpcm.