Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}\)
\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}-\frac{1}{b-a}\)
\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}\)
Cộng theo vế ba đẳng trên được dpcm.
Áp dụng bđt Cauchy Schwarz dưới dạng Engel ta có :
\(\frac{\left(a+b\right)^2}{c}+\frac{\left(c+b\right)^2}{a}+\frac{\left(a+c\right)^2}{b}\ge\frac{\left(a+b+c+b+c+a\right)^2}{a+b+c}\)
\(=\frac{\left(2a+2b+2c\right)^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Từ giả thiết \(ab+bc+ca=2abc\)suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)thì \(\hept{\begin{cases}x+y+z=2\\x,y,z>0\end{cases}}\)và bất đẳng thức cần chứng minh trở thành \(\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge\frac{1}{2}\)hay \(\frac{x^3}{\left(y+z\right)^2}+\frac{y^3}{\left(z+x\right)^2}+\frac{z^3}{\left(x+y\right)^2}\ge\frac{1}{2}\)
Áp dụng bất đẳng thức Bunyakovsky dạng phân thức ta được \(\frac{x^3}{\left(y+z\right)^2}+\frac{y^3}{\left(z+x\right)^2}+\frac{z^3}{\left(x+y\right)^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y+z\right)^2+y\left(z+x\right)^2+z\left(x+y\right)^2}\)\(=\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2x+x^2z+z^2x+y^2z+z^2y+6xyz}\)
Ta cần chứng minh\(\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2x+x^2z+z^2x+y^2z+z^2y+6xyz}\ge\frac{1}{2}\)\(\Leftrightarrow2\left(x^2+y^2+z^2\right)^2\ge x^2y+y^2x+x^2z+z^2x+y^2z+z^2y+6xyz\)
Thật vậy, theo một đánh giá quen thuộc ta có \(2\left(x^2+y^2+z^2\right)^2=2\left(x^2+y^2+z^2\right)\left(x^2+y^2+z^2\right)\)\(\ge\frac{2\left(x+y+z\right)^2\left(x^2+y^2+z^2\right)}{3}\)
Mà ta lại có \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)=x^3+y^3+z^3+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y\)
Suy ra ta có \(\frac{2\left(x+y+z\right)^2\left(x^2+y^2+z^2\right)}{3}\ge\frac{4\left(x^3+y^3+z^3+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\right)}{3}\)
Ta cần chỉ ra được \(4\left(x^3+y^3+z^3+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\right)\)\(\ge3\left(x^2y+y^2x+x^2z+z^2x+y^2z+yz^2+6xyz\right)\)
Hay\(4\left(x^3+y^3+z^3\right)+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\ge18xyz\)
Áp dụng bất đẳng thức Cauchy ta được \(4\left(x^3+y^3+z^3\right)\ge12xyz\); \(x^2y+y^2z+z^2x\ge3xyz\); \(xy^2+yz^2+zx^2\ge3xyz\)
Cộng theo vế các bất đẳng thức trên ta được\(4\left(x^3+y^3+z^3\right)+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\ge18xyz\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{3}{2}\)
Sử dụng giả thiết \(a^2+b^2+c^2=3\), ta được: \(\frac{a^2b^2+7}{\left(a+b\right)^2}=\frac{a^2b^2+1+2\left(a^2+b^2+c^2\right)}{\left(a+b\right)^2}\)\(\ge\frac{2ab+2\left(a^2+b^2+c^2\right)}{\left(a+b\right)^2}=1+\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}\)
Tương tự, ta được: \(\frac{b^2c^2+7}{\left(b+c\right)^2}\ge1+\frac{b^2+c^2+2a^2}{\left(b+c\right)^2}\); \(\frac{c^2a^2+7}{\left(c+a\right)^2}\ge1+\frac{c^2+a^2+2b^2}{\left(c+a\right)^2}\)
Ta quy bài toán về chứng minh bất đẳng thức: \(\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}+\frac{b^2+c^2+2a^2}{\left(b+c\right)^2}+\frac{c^2+a^2+2b^2}{\left(c+a\right)^2}\ge3\)
Áp dụng bất đẳng thức Cauchy ta được \(\Sigma_{cyc}\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}\ge3\sqrt[3]{\frac{\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}\)
Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\ge1\)
Áp dụng bất đẳng thức quen thuộc \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)ta được: \(8\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
Mặt khác ta lại có
\(4\left(a^2+b^2\right)\left(b^2+c^2\right)\le\left(2b^2+c^2+a^2\right)^2\)(1) ; \(4\left(b^2+c^2\right)\left(c^2+a^2\right)\le\left(2c^2+a^2+b^2\right)^2\)(2);\(4\left(c^2+a^2\right)\left(a^2+b^2\right)\le\left(2a^2+b^2+c^2\right)^2\)(3) (Theo BĐT \(4xy\le\left(x+y\right)^2\))
Nhân theo vế 3 bất đẳng thức (1), (2), (3), ta được: \(64\left(a^2+b^2\right)^2\left(b^2+c^2\right)^2\left(c^2+a^2\right)^2\)\(\le\left(2a^2+b^2+c^2\right)^2\left(2b^2+c^2+a^2\right)^2\left(2c^2+a^2+b^2\right)^2\)
hay \(8\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\)\(\le\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)\)
Từ đó dẫn đến \(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)\(\le\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)\)
Suy ra \(\frac{\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\ge1\)
Vậy bất đẳng thức trên được chứng minh
Đẳng thức xảy ra khi a = b = c = 1
Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có:
\(\left(a+b+c\right)\left[\frac{a}{\left(ac+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right]\)
\(\ge\left(\frac{a}{ac+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2\) \(\left(1\right)\)
Lại có: \(\frac{a}{ac+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a}{ac+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\) ( Do abc=1 )
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=1\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(\left(a+b+c\right)\left[\frac{a}{\left(ac+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right]\ge1\)
Mà \(a;b;c>0\Rightarrow a+b+c>0\)
\(\Rightarrow\frac{a}{\left(ac+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\ge\frac{1}{a+b+c}\) (đpcm)
Đặt \(A=\frac{\left(a+b\right)^2}{ab}+\frac{\left(b+c\right)^2}{bc}+\frac{\left(c+a\right)^2}{ca}=\frac{a^2+2ab+b^2}{ab}+\frac{b^2+2bc+c^2}{bc}+\frac{c^2+2ac+c^2}{ca}\)
\(=\frac{a}{b}+2+\frac{b}{a}+\frac{b}{c}+2+\frac{c}{b}+\frac{c}{a}+2+\frac{a}{c}=6+a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{a}+\frac{1}{c}\right)+c\left(\frac{1}{b}+\frac{1}{a}\right)\)
\(\ge6+\frac{4a}{b+c}+\frac{4b}{c+a}+\frac{4c}{a+b}\ge6+2\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+b}\right)+2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
\(\ge6+2\cdot\frac{3}{2}+2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=9+2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
Dấu "=" xảy ra <=> a=b=c