Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Tới đây thì đơn giản rồi nhé.
2b)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
<=> \(\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a+b+c}\)
<=> (ab+bc+ca)(a+b+c)=abc
<=> (ab+bc+ca)(a+b+c)-abc=0
<=> (a+b)(b+c)(c+a) = 0
<=> a+b=0 hoặc b+c=0 hoặc c+a=0
<=> a=-b hoặc b=-c hoặc c = -a
sau đó thay vào cái cần c/m
Bạn vào đây tham khảo sau đó áp dụng vào bài của bạn nhé: Câu hỏi của Võ Khánh Lê - Toán lớp 0 | Học trực tuyến
Chào bạn
bạn nhân chéo lên rồi tách ra thì bạn sẽ có
1/x+1/y+1/z=1/x+y+z tương đương với (x+y)(y+z)(x+z)=0
Đến đây thì dễ rồi
máu biếng tới tận não:
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(\left[\left(a+b\right)^3+c^2\right]-ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\dfrac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{2}=0\)
\(\Leftrightarrow\left(a+b+c\right)\dfrac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a-b=b-c=c-a\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
Mà a,b,c >0
=> a = b = c
=> S = 3
\(\)
Ta có: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{a+b+c+d}=1\)
\(\Rightarrow\dfrac{a}{b}=1\Rightarrow a=b\)
\(\dfrac{b}{c}=1\Rightarrow b=c\)
\(\dfrac{c}{d}=1\Rightarrow c=d\)
\(\Rightarrow a=b=c=d\)
\(\Rightarrow a^{20}.b^{17}.c^{2017}=d^{20}.d^{17}.d^{2017}=d^{2054}\)
đpcm
Tham khảo nhé~