K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2019

theo đề  \(-1\le a\le2\Leftrightarrow\left(a-2\right)\left(a+1\right)\le0\Leftrightarrow a^2-a-2\le0\)

tương tự

\(b^2-b-2\le0\)

\(c^2-c-2\le0\)

nên \(a^2-a-2+c^2-c-2+b^2-b-2\le0\)

\(a^2+c^2+b^2-6\le0\Leftrightarrow a^2+c^2+b^2\le6\)

9 tháng 8

P=\(\dfrac{\sqrt{2}.a}{\sqrt{\left(a^2+\left(b+c\right)^2\right)\left(1+1\right)}}+\dfrac{\sqrt{2}.b}{\sqrt{\left(b^2+\left(a+c\right)^2\right)\left(1+1\right)}}+\dfrac{\sqrt{2}.c}{\sqrt{\left(c^2+\left(b+a\right)^2\right)\left(1+1\right)}}\)>=\(\dfrac{\sqrt{2}.a}{\sqrt{\left(a+b+c\right)^2}}+\dfrac{\sqrt{2}.b}{\sqrt{\left(a+b+c\right)^2}}+\dfrac{\sqrt{2}.c}{\sqrt{\left(a+b+c\right)^2}}\)>=\(\sqrt{2}\)

9 tháng 8

nhầm dấu tí là dấu lớn hơn bằng còn cách lm thì đúng nhé 

4 tháng 3 2016

Sao hok ai giải giúp thế

30 tháng 7 2016

Đặt \(x=1-a\)\(y=1-b\)\(z=1-c\)

Ta có :  \(1+a=\left(1-b\right)+\left(1-c\right)=y+z\) 

\(1+b=\left(1-a\right)+\left(1-c\right)=x+z\)

\(1+c=\left(1-a\right)+\left(1-b\right)=x+y\)

Áp dụng bđt Cauchy, ta có : \(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\Leftrightarrow a=b=c=\frac{1}{3}\)

Vậy Min A = 8 \(\Leftrightarrow a=b=c=\frac{1}{3}\)

9 tháng 1 2016

\(n+26=a^3\left(a\in N\cdot\right)\)
\(n-11=b^3\left(b\in N\cdot\right)\)
=>\(a^3-b^3=37\)
\(\left(a-b\right)\left(a^2+ab+b^2\right)=37\)
\(\Rightarrow\left(a-b\right)\&\left(a^2+ab+b^2\right)\) là ước của 37
Mà \(a^2-ab+b^2\ge a-b\ge0\)
\(\int^{a^2+ab+b^2=37}_{a-b=1}\Leftrightarrow\int^{a=b+1}_{\left(b+1\right)^2+b\left(b+1\right)+b^2=37}\Leftrightarrow\int^{a=b+1}_{3b^2+3b-36=0}\Leftrightarrow\int^{a=4}_{b=3}\)(vì a;b>0) thay hoặc a vào chỗ đặt rồi tự tìm nốt

21 tháng 10 2018

Ta có:

\(M=\frac{19a+3}{1+b^2}+\frac{19b+3}{c^2+1}+\frac{19c+3}{a^2+1}\)

\(=19a-\frac{19ab^2-3}{b^2+1}+19b-\frac{19bc^2-3}{c^2+1}+\frac{19ca^2-3}{a^2+1}\)

\(\ge19\left(a+b+c\right)-\frac{19ab^2-3}{2b}-\frac{19bc^2-3}{2c}-\frac{19ca^2-3}{2a}\)

\(=19\left(a+b+c\right)-19\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\ge19.3-\frac{19.3}{2}+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{19.3}{2}+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Lại có:

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\ge3\frac{\left(1+1+1\right)^2}{ab+bc+ca}=\frac{3.9}{3}=9\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)

\(\Rightarrow M\ge\frac{19.3}{2}+\frac{3}{2}.3=33\)

\(\)

20 tháng 8 2015

Cho 3 **** kiểu gì nào?

a) a,b có thể là số vô tỉ. Ví dụ \(a=b=\sqrt{2}\) là vô tỉ mà ab và a/b đều hữu tỉ.

b) Trong trường hợp này \(a,b\) không là số vô tỉ (tức cả a,b đều là số hữu tỉ). Thực vậy theo giả thiết  \(a=bt\),  với \(t\) là số hữu tỉ khác \(-1\). Khi đó \(a+b=b\left(1+t\right)=s\) là số hữu tỉ, suy ra \(b=\frac{s}{1+t}\) là số hữu tỉ. Vì vậy \(a=bt\)  cũng hữu tỉ.

c) Trong trường hợp này \(a,b\)  có thể kaf số vô tỉ. Ví dụ ta lấy \(a=1-\sqrt{3},b=3+\sqrt{3}\to a,b\) vô tỉ nhưng \(a+b=4\)  là số hữu tỉ và \(a^2b^2=\left(ab\right)^2=12\)  cũng là số hữu tỉ.

15 tháng 1 2016

dùng đelte

 

15 tháng 1 2016

Tuấn làm ra lun cho mk xem đi, mk làm rồi nhưng ko biết có đúng ko?