Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM ta có:
$a^2+9\geq 2\sqrt{9a^2}=2|3a|\geq 6a$
Tương tự: $b^2+9\geq 6b; c^2+9\geq 6c$
Cộng theo vế:
$a^2+b^2+c^2\geq 6(a+b+c)-27(*)$
Cũng áp dụng BĐT AM-GM:
$a^2+b^2\geq 2\sqrt{a^2b^2}=2|ab|\geq 2ab$
Hoàn toàn tương tự và cộng theo vế:
$2(a^2+b^2+c^2)\geq 2(ab+bc+ac)$
$\Leftrightarrow 6(a^2+b^2+c^2)\geq 6(ab+bc+ac)(**)$
Lấy $(*)+(**)\Rightarrow 7(a^2+b^2+c^2)\geq 6(a+b+c+ab+bc+ac)-27=6.36-27=189$
$\Rightarrow a^2+b^2+c^2\geq 27$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=3$
Vì \(0\le a;b;c\le1\) \(\Rightarrow\hept{\begin{cases}b^2\le b\\c^3\le c\end{cases}}\)
\(\Rightarrow a+b^2+c^3-ab-bc-ac\le a+b+c-ab-bc-ac\)
\(=\left(-1+a+b+c-ab-bc-ac+abc\right)-abc+1\)
\(=\left(1-a\right)\left(1-b\right)\left(1-c\right)-abc+1\)
Do \(1\ge a;b;c\ge0\) nên \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\\-abc\le0\end{cases}}\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)-abc\le0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)-abc+1\le1\)
Hay \(a+b^2+c^3-ab-bc-ca\le1\)(đpcm)
Do\(1\ge a,b,c\ge0\)
\(\Rightarrow b\ge b^2,c\ge c^3\)
Do đó: \(a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\)(1)
Vì \(1\ge a,b,c\ge0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)
\(\Rightarrow a+b+c-ab-bc-ca+abc-1\le0\)
\(\Rightarrow a+b+c-ab-bc-ca\le1-abc\)
Mà \(abc\ge0\)
\(\Rightarrow a+b+c-ab-bc-ca\le1\)(2)
Từ (1) và (2) => đpcm
Dự đoán đẳng thức xảy ra tại \(a=b=c=\sqrt{3}\)
Ta có: \(\sqrt{a^2+1}=\sqrt{\frac{1}{4}}.\sqrt{4\left(a^2+1\right)}\le\sqrt{\frac{1}{4}}\left(\frac{4+a^2+1}{2}\right)=\frac{5+a^2}{4}\)
Thiết lập hai bđt còn lại tương tự và cộng theo vế:
\(VP\le3+\frac{1}{2}\left(\frac{15+a^2+b^2+c^2}{2}\right)\)\(=\frac{27+a^2+b^2+c^2}{4}\)
Ta chỉ cần chứng minh: \(ab+bc+ca\ge\frac{27}{4}+\frac{a^2+b^2+c^2}{4}\)
Đến đây chưa nghĩ ra =((
Lạy trời cho con đừng gặp ngõ cụt như nãy nx,làm mà cứ ngõ cụt chán ~v
Lời giải:
\(a+b+c=abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\) (do a,b,c dương nên a + b + c > 0 tức là abc > 0)
Lại có: \(1=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{9}{ab+bc+ca}\Rightarrow VT=ab+bc+ca\ge9\) (1)
Ta sẽ c/m \(VP=3+\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le9\)
\(\Leftrightarrow A=\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le6\)
Thật vậy: \(A=\frac{1}{2}\left[\sqrt{4\left(a^2+1\right)}+\sqrt{4\left(b^2+1\right)}+\sqrt{4\left(c^2+1\right)}\right]\)
\(\le\frac{1}{2}\left(\frac{15+a^2+b^2+c^2}{2}\right)=\frac{15+a^2+b^2+c^2}{4}\)
Lại gặp ngõ cụt nữa r,=((Ai đó giúp em vs!!!
Ta có
\(\frac{\left(a+b+c\right)^2}{3}\)> ab + bc + ca =3 => a + b + => 3
ta có abc > ( a+b+c) ( b + c -a ) ( c + a -b)
= ( a+b+c+ 2c) ( b + c -a +2a) ( c + a -b+2b)
> ( 3 -2c ) ( 3 - 2 a ) ( 3 - 2 b ) ( do a+b + c)> 3
= 12 ( xy + yz + zx ) -8 xyz - 18 ( x + y + z ) + 27
= 12 .3 - 8xyz - 18 .3 +27
9 - 8 xyz
ta có : xyz > 9 - 8 xyz + 8 xyz > 9 => xyz > 1
do đó : 4 ( a + b + c ) + abc > 4.3 + 1 = 13 (dpcm)
hok tốt
Ta có: \(0\le\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)(1)
theo đề bài:
\(a^2+b^2+ab+bc+ac< 0\)
=> \(2\left(a^2+b^2+ab+bc+ac\right)< 0\)
=> \(2a^2+2b^2+2ab+2bc+2ac< 0\)(2)
Từ (1); (2) =>\(2a^2+2b^2+2ab+2bc+2ac< \) \(a^2+b^2+c^2+2ab+2bc+2ac\)
=> \(a^2+b^2< c^2\)