K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2018

\(a+b+c=\frac{3}{2}\)

\(\Leftrightarrow\left(a+b+c\right)^2=\frac{9}{4}\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=\frac{9}{4}\)

\(\Leftrightarrow a^2+b^2+c^2=\frac{9}{4}-2\left(ab+bc+ca\right)\) 

Mặt khác: 

Ta sẽ c/m \(\frac{9}{4}-2\left(ab+bc+ca\right)=\frac{3}{2}\) (1)

\(\Leftrightarrow2\left(ab+bc+ca\right)=\frac{9}{4}-\frac{3}{2}=\frac{3}{4}\)

\(\Leftrightarrow4\left(ab+bc+ca\right)=\frac{3}{2}=a+b+c\)

Suy ra \(ab+bc+ca=\frac{a+b+c}{4}\)

Do đó: 

\(=\frac{9}{4}-2\left(\frac{a+b+c}{4}\right)=\frac{9}{4}-2\left(\frac{\left(\frac{3}{2}\right)}{4}\right)=\frac{9}{4}-2.\frac{3}{8}=\frac{3}{2}\) (2)

Từ (2) suy ra (1) đúng.

Do (1) đúng: suy ra: \(a^2+b^2+c^2=\frac{9}{4}-2\left(ab+bc+ca\right)=\frac{3}{2}^{\left(đpcm\right)}\)

10 tháng 12 2018

Mình ghi thiếu một chỗ nên có nhiều bạn không hiểu: Chỗ hàng thứ 4 từ dưới đếm lên cho đến hết,bạn sửa thành:

"Do đó:

\(\frac{9}{4}-2\left(ab+bc+ca\right)=\frac{9}{4}-2\left(\frac{a+b+c}{4}\right)\)

\(=\frac{9}{4}-2\left(\frac{\left(\frac{3}{2}\right)}{4}\right)=\frac{9}{4}-2.\frac{3}{8}=\frac{3}{2}\) (2)

Từ (2) suy ra (1) đúng suy ra \(a^2+b^2+c^2=\frac{9}{4}-2\left(ab+bc+ca\right)=\frac{3}{2}^{\left(đpcm\right)}\)"

1 tháng 10 2017

d) => 2a^2 + 2b^2 + 2c^2 = 2ab+ 2bc + 2ca

    => 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = 0

( a^2 - 2ab+b^2 ) + ( a^2 - 2ac + c^2) + ( b^2 - 2bc - c^2) = 0

(a-b)^2 + (a-c)^2 + (b-c)^2 = 0

=> | ( a-b)^2 = 0 => a=b     
     |  ( a-c)^2 = 0 => a=c
     |  ( b-c)^2 = 0 => b=c

=>>> a=b=c

1 tháng 10 2017

b) => 2(a-b)^2 - (a-b)^2  = 0

   2 ( a^2- 2ab + b^2) - a^2+ 2ab - b^2 = 0

  2a^2 - 4ab+ 2b^2 - a^2 + 2ab - b^2 = 0

 a^2 -2ab + b^2 =0 

( a-b)^2 = 0 => a=b

Cái này bạn nên xem lại đề có đúng ko nha~~ Mk ko lm ra số đối đc Sorry

22 tháng 11 2017

Mk cx đang định hỏi câu này

3 tháng 7 2017

3. 1998=a+b+c (a,b,c\(\in N\))

Xét a^3+b^3+c^3 - (a+b+c)=a(a-a)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)

mà n(n-1)(n+1) luôn chia hết cho 6 với mọi số tự nhiên n

=>a^3+b^3+c^3 chia hết cho 6 (a+b+c chia hết cho 6)