Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{3}{a+b}=\dfrac{2}{b+c}=\dfrac{1}{c+a}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{b+c}{2}=\dfrac{c+a}{1}=\dfrac{2\left(a+b+c\right)}{6}=\dfrac{a+b+c}{3}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{a+b+c}{3}\\ \Rightarrow3\left(a+b+c\right)=3\left(a+b\right)\\ \Rightarrow3\left(a+b\right)+3c=3\left(a+b\right)\\ \Rightarrow3c=0\\ \Rightarrow c=0\)
Vậy \(P=\dfrac{a+b-2019c}{a+b+2018c}=\dfrac{a+b}{a+b}=1\)
Câu hỏi của nguyen phuong thao - Toán lớp 7 - Học toán với OnlineMath
Lớp 7 gì mà dễ ẹc :))
\(\frac{2a-b}{a+b}=\frac{2}{3}\)
\(\Leftrightarrow6a-3b=2a+2b\)
\(\Rightarrow4a=5b\)
\(\frac{b-c+a}{2a-b}=\frac{2}{3}\)
\(\Leftrightarrow4a-2b=3b-3c+3a\)
\(\Leftrightarrow a=5b-3c\)
\(\Leftrightarrow a-5b=-3c\)
\(\Leftrightarrow a-4a=-3c\)
\(\Leftrightarrow-3a=-3c\)
\(\Rightarrow a=c\)
Ta có : \(P=\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2\left(a+3c\right)^3}=\frac{\left(4a+4a\right)^5}{\left(4a+4a\right)^2\left(a+3a\right)^3}=\frac{\left(8a\right)^3}{\left(4a\right)^3}=8\)
\(\frac{a+b+c}{2}=\frac{a+b-7}{4c}=\frac{b+c+3}{4a}=\frac{a+c+4}{4b}.\)
TH1: \(a+b+c=0\)
=> \(\hept{\begin{cases}a+b-7=0\\b+c+3=0\\a+c+4=0\end{cases}}\)
=> a + b - 7 + b + c + 3 - a - c - 4 =0
=> 2b -8 =0
=> 2b = 4
=> b = 2.
=> a = 5; c = - 5
=> A = 20a + 11b + 2017c = 20.5 + 11.2 + 2017 ( -5) = -9963.
TH2: a + b + c khác 0.
Áp dụng dãy tỉ số bằng nhau:
\(\frac{a+b+c}{2}=\frac{a+b-7}{4c}=\frac{b+c+3}{4a}=\frac{a+c+4}{4b}\)
\(=\frac{a+b-7+b+c+3+a+c+4}{4c+4a+4b}=\frac{2a+2b+2c}{4a+4b+4c}=\frac{1}{2}\)(1)
=> \(\hept{\begin{cases}a+b-7=2c\\b+c+3=2a\\a+c+4=2b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c+7\left(1\right)\\b+c=2a-3\left(2\right)\\a+c=2b-4\left(3\right)\end{cases}}\)
Từ (1) => \(a+b+c=1\left(4\right)\)
Từ (1); (4) => 2c + 7 + c = 1 => 3c = -6 => c = -2
Từ (2); (4) => 2a - 3 + a = 1 => 3a = 4 => a = 4/3
Từ (3); (4) => 2b - 4 + b = 1 => 3b = 5 => b = 5/3
=> A = 20a + 11b + 2017c = \(20.\frac{4}{3}+11.\frac{5}{3}+2017.\left(-2\right)=-3989\)
\(14a-7b+4=7\left(2a-b+1\right)-3⋮7̸\)\(\Rightarrow4a+2b+1⋮7\Leftrightarrow4a+21a+2b-14b+1+7⋮7\Leftrightarrow25a-12b+8⋮7\)
\(14a-7b+4=7\times\left(2a-b\right)+4⋮̸7\)
\(\left(14a-7b+4\right)\left(4a+2b+1\right)⋮7\)
\(\Rightarrow4a+2b+1⋮7\)
\(21a-14b+7⋮7\)
\(\Rightarrow\left(4a+2b+1\right)+\left(21a-14b+7\right)⋮7\)
\(\Rightarrow\left(4a+21a\right)-\left(14b-2b\right)+\left(1+7\right)⋮7\)
\(\Rightarrow25a-12b+8⋮7\)
\(\frac{a+b+c}{2}\) =\(\frac{a+b-7}{4c}\)=\(\frac{b+c+3}{4a}\)=\(\frac{a+c+4}{4b}\)
Xảy ra 2 trường hợp, mình làm trường hợp 1 thôi.
TH1 : \(a+b+c=0\)
=>\(\hept{\begin{cases}a+b-7=0\\b+c+3=0\\a+c+4=0\end{cases}}\)
=> a + b - 7 + b + c + 3 - a - c - 4 = 0
=> 2b - 8 = 0
=> 2b = 4
=> b = 2
=> a = 5 , c = -5
=> A = 20a + 11b + 2017c = 20.5 + 11.2 + 2017.(-5) = - 9963
Nếu a + b + c = 0 thì \(a+b+5=0,b+c-10=0,a+c+5=0\)
Tìm được a = -10 , b = 5 và c = 5
Khi đó: \(A=\left(-25\right).\left(-10\right)+12.5-2018.5=250+60-10090=-9780\)
Nếu \(a+b+c\ne0\) thì áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{a+b+c}{2}=\frac{a+b+5}{4c}=\frac{b+c-10}{4a}=\frac{a+c+5}{4b}\)
\(=\frac{\left(a+b+5\right)+\left(b+c-10\right)+a+c+5}{4c+4a+4b}=\frac{2\left(a+b+c\right)}{4\left(a+b+c\right)}=\frac{1}{2}\)(1)
Tìm được a + b + c = 1
Từ (1), ta được: \(\frac{a+b+5}{4c}=\frac{1}{2}\Rightarrow2a+2b+10=4c\)
\(\Rightarrow2\left(a+b+c\right)+10=4c+2c\Rightarrow12=6c\Rightarrow c=2\)
TỪ (1) cũng có: \(\frac{b+c-10}{4a}=\frac{1}{2}\Rightarrow2b+2c-20=4a\)
\(\Rightarrow2\left(a+b+c\right)-20=6a\Rightarrow-18=6a\Rightarrow a=-3\)
\(a+b+c=1\Rightarrow\left(-3\right)+b+2=1\Rightarrow b=2\)
Khi đó: \(A=\left(-25\right).\left(-3\right)+12.2-2018.2=75+24-4036=-3937\)
Vậy A = -9780 hoặc A = -3937