Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng nếu a,b,c là các số khác 0 thoả mãn : (ab+ac)/2=(ba+bc)/3=(ca+cb)/4 thì a/3=b/5=c/15
ta có (ab+ac)/2 = (ba+bc)/3 = (ca+cb)/4
=ab+ac-ba-bc+ca+cb/2-3+4 = 2ac/3
=ab+ac+ba+bc-ca-cb/2+3-4 = 2ab
=ab+ac-ba-bc-ca-cb/2-3-4 = 2bc/5
=> 2ac/3=2ab=2bc/5
Ta có 2ac/3=2ab/1 =>c/3 = b/1 => c/15 = b/5 (1)
2ac/3 = 2bc/5 => a/3 = b/5 (2)
từ (1) và(2) => a/3 = b/5 = c/15
\(\frac{ab}{a+b}=\frac{bc}{b+c}\)
<=> \(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)
<=> \(\frac{9a}{a+b}=\frac{9b}{b+c}\)
<=> \(\frac{a}{a+b}=\frac{b}{b+c}\)
=> a(b + c) = b(a + b)
<=> ab + ac = ba + b2
=> ac = b2 (đpcm)
Ta có:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\iff\)\(\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ba}\)
\(\iff\) \(ac+bc=ab+ac=bc+ba\)
+)\(ac+bc=ab+ac\)
\(\implies\)\(bc=ab\)
\(\implies\) \(c=a\left(1\right)\)
+)\(ab+ac=bc+ba\)
\(\implies\) \(ac=bc\)
\(\implies\) \(a=b\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)
\(\implies\) \(a=b=c\)
\(\implies\) \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{aa+bb+cc}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)
Vậy \(M=1\)
\(\hept{\begin{cases}a+ab+b=3\\b+bc+c=8\\c+ca+a=15\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}a+ab+b+1=4\\b+bc+c+1=9\\c+ca+a+1=16\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\left(a+1\right)\left(b+1\right)=4\\\left(b+1\right)\left(c+1\right)=9\\\left(c+1\right)\left(a+1\right)=16\end{cases}}\) \(\left(1\right)\)
Nhân vế với vế \(\Rightarrow\left[\left(a+1\right)\left(b+1\right)\left(c+1\right)\right]^2=\left(24^2\right)\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=24\)\(\left(2\right)\)
Chia vế với vế của \(\left(2\right)\)cho lần lượt các pt của \(\left(1\right)\), ta được :
\(\hept{\begin{cases}a+1=\frac{8}{3}\\b+1=\frac{3}{2}\\c+1=6\end{cases}}\) \(\Rightarrow\) \(\hept{\begin{cases}a=\frac{5}{3}\\b=\frac{1}{2}\\c=5\end{cases}}\)
\(\Rightarrow a+b+c=\frac{43}{6}\)
\(a,\dfrac{3}{a+b}=\dfrac{2}{b+c}=\dfrac{1}{c+a}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{b+c}{2}=\dfrac{c+a}{1}=\dfrac{2\left(a+b+c\right)}{6}=\dfrac{a+b+c}{3}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{a+b+c}{3}\\ \Rightarrow3\left(a+b+c\right)=3\left(a+b\right)\\ \Rightarrow3\left(a+b\right)+3c=3\left(a+b\right)\\ \Rightarrow3c=0\\ \Rightarrow c=0\)
Vậy \(P=\dfrac{a+b-2019c}{a+b+2018c}=\dfrac{a+b}{a+b}=1\)
Câu hỏi của Đậu Đình Kiên - Toán lớp 7 - Học toán với OnlineMath