K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

Vì \(a,b,c\le1\) nên ta có:

\(\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow1-a-b-c+ab+bc+ca-abc\ge0\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\)

Mà ta có: \(\hept{\begin{cases}b^2\le b\\c^3\le c\\1-abc\le1\end{cases}}\)

Từ đó suy ra:

\(a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\le1-abc\le1\)

Ta có ĐPCM

22 tháng 6 2018

Ta chứng minh BĐT

( a + b + c ) ( 1 a + 1 b + 1 c ) ≥ 9 ( * ) ( * ) < = > 3 + ( a b + b a ) + ( b c + c b ) + ( c a + a c ) ≥ 9

Áp dụng BĐT Cô – si cho hai số dương ta có:

a b + b a ≥ 2 b c + c b ≥ 2 c a + a c ≥ 2 =>(*) đúng

 

= > 9 a + b + c ≤ 1 a + 1 b + 1 c ≤ 3 = > a + b + c ≥ 3

Trở lại bài toán: Áp dụng BĐT Cô si cho hai số dương ta có  1 + b 2 ≥ 2 b

Ta có: a 1 + b 2 = a − a b 2 1 + b 2 ≥ a − a b 2 2 b = a − a b 2 ( 1 )

 

Tương tự ta có: 

b 1 + c 2 ≥ b − b c 2 ( 2 ) c 1 + a 2 ≥ c − c a 2 ( 3 )

 

Cộng từng vế của (1), (2) và (3) ta có:

a 1 + b 2 + b 1 + c 2 + c 1 + a 2 ≥ a + b + c − 1 2 ( a b + b c + c a ) = > a 1 + b 2 + b 1 + c 2 + c 1 + a 2 + 1 2 ( a b + b c + c a ) ≥ a + b + c ≥ 3

 

Y
22 tháng 5 2019

\(a,b,c\in\left[0;1\right]\Rightarrow\left\{{}\begin{matrix}b^2\le b\\c^2\le c\\0\le abc\le1\end{matrix}\right.\)

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Rightarrow1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc\ge0\)

\(\Rightarrow a+b+c-ab+bc+ca+abc\le1\)

\(\Rightarrow a+b^2+c^2-ab-bc-ca\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\) trong 3 số a,b,c có 1 số bằng 1 , 2 số còn lại bằng 0

Y
22 tháng 5 2019

nhầm dấu "=" leuleu

Dấu "=" xảy ra <=> trong 3 số a,b,c có 1 số bằng 0, 2 số bằng 1 hoặc 1 số bằng 1, 2 số bằng 0

NV
13 tháng 8 2021

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)

3 tháng 6 2017

vì a,b,c thuộc [0;1] =>0 </ a,b,c </ 1 => b(b-1) </ 0 ;c(c^2-1) </ 0=> b^2 </ b , c^3 </ c 

=>a+b^2+c^3-ab-bc-ca </ a+b+c-ab-bc-ac = a+b+c-(ab+bc+ac) 

cũng có a,b,c thuộc [0;1] => (1-a)(1-b)(1-c)=(1-b-a+ab)(1-c)=1-c-b+bc-a+ac+ab-abc >/ 0 

=>ab+bc+ac-(a+b+c) +1 >/ abc >/ 0 (do a,b,c >/ 0 ) => a+b+c-(ab+bc+ca)-1 </ 0 => a+b+c-(ab+bc+ac) </ 1 

->đpcm

Sửa đề: 1+a^2;1+b^2;1+c^2

\(\dfrac{a}{\sqrt{1+a^2}}=\dfrac{a}{\sqrt{a^2+ab+c+ac}}=\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}< =\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

\(\dfrac{b}{\sqrt{1+b^2}}< =\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{b+a}\right)\)

\(\dfrac{c}{\sqrt{1+c^2}}< =\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{a+b}\right)\)

=>\(A< =\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{2}\)

NV
9 tháng 8 2021

Với mọi số thực dương a;b;c ta có BĐT:

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Tương tự, ta có:

\(VT\le\dfrac{ab}{ab\left(a^2+b^2\right)+ab}+\dfrac{bc}{bc\left(b^2+c^2\right)+bc}+\dfrac{ca}{ca\left(c^2+a^2\right)+ca}\)

\(VT\le\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(VT\le\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\)

Ta lại có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

\(\Rightarrow VT\le\dfrac{xyz}{xy\left(x+y\right)+xyz}+\dfrac{xyz}{yz\left(y+z\right)+xyz}+\dfrac{xyz}{zx\left(z+x\right)+xyz}=1\)