\(4a^2+a=8b^2+b\).CHỨNG MINH RẰNG :a-b là số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2021

Ta có: \(2a^2+a=3b^2+b\)

\(\Leftrightarrow\left(2a^2-2b^2\right)+\left(a-b\right)=b^2\)

\(\Leftrightarrow\left(2a+2b\right)\left(a-b\right)+\left(a-b\right)=b^2\)

\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)

*CM 2a+2b+1 và a-b nguyên tố cùng nhau

=> 2a+2b+1 cũng là 1 SCP

DD
4 tháng 2 2021

Ta có: 

\(2a^2+a=3b^2+b\)

\(\Leftrightarrow2a^2-2b^2+a-b=b^2\)

\(\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\)

Ta có: 

Đặt \(d=\left(a-b,2a+2b+1\right)\).

\(\Rightarrow\hept{\begin{cases}a-b⋮d\\2a+2b+1⋮d\end{cases}}\Rightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2⋮d^2\Rightarrow b⋮d\)

\(\Rightarrow\left(a-b\right)+b=a⋮d\)

\(\Rightarrow\left(2a+2b+1\right)-2a-2b=1⋮d\Rightarrow d=1\).

Do đó \(a-b,2a+2b+1\)là hai số chính phương. 

DD
2 tháng 6 2021

\(\frac{a}{b}=\frac{a^2+n^2}{b^2+n^2}=t\Rightarrow\hept{\begin{cases}a=bt\\a^2+n^2=t\left(b^2+n^2\right)\end{cases}}\)

\(\Rightarrow b^2t^2+n^2=b^2t+n^2t\)

\(\Leftrightarrow b^2\left(t^2-t\right)=n^2\left(t-1\right)\)

Nếu \(t=1\)thì: \(a=b\Rightarrow ab=a^2\)là số chính phương. 

Nếu \(t\ne1\)thì: \(t=\frac{n^2}{b^2}\)

Khi đó \(a=b.\frac{n^2}{b^2}\Leftrightarrow ab=n^2\)là số chính phương. 

14 tháng 12 2016

ko biết nhưng hãy tích dùng hộ mình đi

14 tháng 12 2016

Mọi người ơi giúp em với huhu :((((

2 tháng 4 2020

Câu hỏi của sjfdksfdkjlsjlfkdjdkfsl - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo link này. 

10 tháng 11 2016

Câu 1:

Ta có: \(2a^2+a=3b^2+b\Rightarrow2a^2+a-3b^2-b=0\Rightarrow3\left(a^2-b^2\right)+\left(a-b\right)=a^2\)

\(\Rightarrow3\left(a-b\right)\left(a+b\right)+\left(a-b\right)=a^2\Rightarrow\left(a-b\right)\left(3a+3b+1\right)=a^2\)

Gọi \(ƯCLN\)\(\left(a-b;3a+3b+1\right)=d\)

=> \(a-b⋮d;3a+3b+1⋮d\Rightarrow\left(a-b\right)\left(3a+3b+1\right)⋮d^2\Rightarrow a^2⋮d^2\Rightarrow a⋮d\Rightarrow6a⋮d\left(1\right)\)

Mà ta lại có: \(3\left(a-b\right)+\left(3a+3b+1\right)⋮d\Rightarrow6a +1⋮d\left(2\right)\)

Từ 1 và 2 => \(d=1\) => \(a-b\)\(3a+3b+1\) là 2 số nguyên tố cùng nhau.

Và đồng thời \(3a+3b+1>a-b\Rightarrow\begin{cases}3a+3b+1=a^2\\a-b=1^2\end{cases}\)

Vậy \(3a+3b+1\)\(a-b\) đều là các số chính phương.

Câu 2:

Ta có: \(6x+5y+18=2xy\Rightarrow5y+18=2xy-6x=2x\left(y-3\right)\Rightarrow2x=\frac{5y+18}{y-3}=\frac{5\left(y-3\right)+33}{y-3}=5+\frac{33}{y-3}\)

Do \(x;y\in Z\Rightarrow\)\(\frac{33}{y-3}\in Z\Rightarrow33⋮y-3\Rightarrow y-3\inƯ\left(33\right)=\left\{\pm1;\pm3;\pm11;\pm33\right\}\)

Ta có bảng sau:

y-31-13-311-1133-33
2x-533-3311-113-31-1
2x38-2816-68264
x19-148-34132
y426014-936-30

 

Vậy \(\left(x;y\right)=\left(19;4\right);\left(-14;2\right);\left(8;6\right);\left(-3;0\right);\left(4;14\right);\left(1;-9\right);\left(3;36\right);\left(2;-30\right)\)

 

 

 

10 tháng 11 2016

Bạn nên ấn cái này để dễ nhìn hơn

Đại số lớp 8

4 tháng 9 2017

Có : \(a^2+1=a^2+ab+ac+bc=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

Tương tự : \(b^2+1=\left(a+b\right)\left(b+c\right)\)và    \(c^2+1=\left(a+c\right)\left(b+c\right)\)

Suy ra : \(S=\left(a+b\right)\left(a+c\right).\left(a+b\right)\left(b+c\right).\left(a+c\right)\left(b+c\right)\)

\(\Leftrightarrow S=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\)là số chính phương \(\forall\)a ,b ,c nguyên !

4 tháng 9 2017

với ab+bc+ca=1, ta có 

\(a^2+1=a^2+ab+bc+ca=\left(a^2+ab\right)+\left(bc+ca\right)\)\(=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+b\right)\)

tương tự tra có \(b^2+1=\left(a+b\right)\left(b+c\right)\)

                          \(c^2+1=\left(a+c\right)\left(b+c\right)\)

=> S=\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\) 

mà a,b, c là các số nguyên => \(\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\) là số chính phương 

=> S là số chính phương (ĐPCM)