Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

co nhieu cau tuong tu tren mang ban tu tm hieu nhe

Áp dụng BĐT Cô-si,ta có :
\(a\sqrt{3a\left(a+2b\right)}\le a.\frac{3a+a+2b}{2}=2a^2+ab\)
Tương tự : \(b\sqrt{3b\left(b+2a\right)}\le2b^2+ab\)
Cộng vế theo vế, ta được :
\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le2\left(a^2+b^2\right)+2ab=4+2ab\le4+a^2+b^2\le6\)
Dấu "=" xảy ra khi a = b = 1

Có bổ đề sau: \(a^2=pq\) với \(a,p,q\in Z^+\) và \(\left(p,q\right)=1\) thì p,q là hai số chính phương
\(2a^2-2b^2+a-b=b^2\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\)(*)
Gọi d là UWCLN của a-b và 2a+2b+1 ta có từ (*) b chia hết d.
a-b chia hết cho d nên 2a-2b chia hết cho d . Vậy 2a+2b+1-(2a-2b) chia hết d
nên 4b+1 chia hết d mà b chia hết cho d nên 1 chia hết d. Vậy hai số a-b và 2a+2b+1 nguyên tố cùng nhau
Áp dụng bổ đề có đpcm

Có: 2a2 + 2b2 = 5ab => 2(a2 + b2) = 5ab => a2 + b2 = \(\frac{5}{2}\)ab
\(A=\frac{2b}{a-b}+1=\frac{2b+a-b}{a-b}=\frac{a+b}{a-b}=\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\frac{a^2+b^2+2ab}{a^2+b^2-2ab}=\frac{\frac{5}{2}ab+2ab}{\frac{5}{2}ab-2ab}=\frac{\frac{9}{2}ab}{\frac{1}{2}ab}=9\)
Vậy A = 9

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
- Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi

Ta có : \(\frac{a}{b^2c^2}+\frac{b}{c^2a^2}+\frac{c}{a^2b^2}=\frac{a^4}{a^3b^2c^2}+\frac{b^4}{b^3c^2a^2}+\frac{c^4}{c^3a^2b^2}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel và giả thiết a2 + b2 + c2 = 3abc ta có :
\(\frac{a^4}{a^3b^2c^2}+\frac{b^4}{b^3c^2a^2}+\frac{c^4}{c^3a^2b^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b^2c^2\left(a+b+c\right)}=\frac{\left(3abc\right)^2}{a^2b^2c^2\left(a+b+c\right)}=\frac{9}{a+b+c}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a=b=c=1

Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq (a^2+b^2)[3a(a+2b)+3b(b+2a)]\)
\((a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq (a^2+b^2)(3a^2+3b^2+12ab)\)
Theo BĐT Cô-si: \(a^2+b^2\geq 2ab\Rightarrow 12ab\leq 6(a^2+b^2)\)
Do đó:
\((a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq (a^2+b^2)(3a^2+3b^2+6a^2+6b^2)=9(a^2+b^2)^2\)
Mà \(a^2+b^2\leq 2\)
\(\Rightarrow (a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq 9.2^2=36\)
\(\Rightarrow a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)}\leq \sqrt{36}=6\)
(đpcm)
Dấu bằng xảy ra khi $a=b=1$

Ta có: \(\frac{2a^2+3b^2}{2a^3+3b^3}\left(a+b\right)=1+ab\frac{2a+3b}{2a^3+3b^3}\)
Áp dụng BĐT Holder ta có:
\(\left(2a^3+3b^3\right)\left(2+3\right)^2\ge\left(2a+3b\right)^3\)
Vậy ta có thể viết lại BĐT cần chứng minh như sau;
\(VT\left(a+b\right)\le2+25ab\left(\frac{1}{\left(2a+3b\right)^2}+\frac{1}{\left(2b+3a\right)^2}\right)\)
Nó đủ để ta có thể thấy rằng
\(25ab\left[\left(2b+3a\right)^2+\left(2a+3b\right)^2\right]\le2\left(2a+3b\right)^2\left(2b+3a\right)^2\)
\(\Leftrightarrow59\left(a^2-b^2\right)^2+13\left(a^4+b^4-a^3b-ab^3\right)\ge0\)
BĐT cuối cùng đúng nên ta có ĐPCM
Nếu \(\left[{}\begin{matrix}a=0\Rightarrow b=0\Rightarrow b=2a\\b=0\Rightarrow a=0\Rightarrow b=2a\end{matrix}\right.\) trái với giả thiết \(\Rightarrow ab\ne0\)
\(2a^2+11ab-3b^2=0\Rightarrow2\left(\frac{a}{b}\right)^2+11\left(\frac{a}{b}\right)-3=0\)
Đặt \(\frac{a}{b}=x\ne0;\pm\frac{1}{2}\Rightarrow2x^2+11x-3=0\Rightarrow11x=3-2x^2\)
\(T=\frac{a-2b}{2a-b}+\frac{2a-3b}{2a+b}=\frac{\frac{a}{b}-2}{\frac{2a}{b}-1}+\frac{\frac{2a}{b}-3}{\frac{2a}{b}+1}=\frac{x-2}{2x-1}+\frac{2x-3}{2x+1}\)
\(T=\frac{\left(x-2\right)\left(2x+1\right)+\left(2x-3\right)\left(2x-1\right)}{4x^2-1}=\frac{6x^2-11x+1}{4x^2-1}=\frac{6x^2-\left(3-2x^2\right)+1}{4x^2-1}\)
\(T=\frac{8x^2-2}{4x^2-1}=2\)