Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{a^2}{2}+8b^2\geq 2\sqrt{\frac{a^2}{2}.8b^2}=4ab$
$\frac{a^2}{2}+8c^2\geq 2\sqrt{\frac{a^2}{2}.8c^2}=4ac$
$2(b^2+c^2)\geq 2.2\sqrt{b^2c^2}=4bc$
Cộng các BĐT trên theo vế và thu gọn ta được:
$a^2+10(b^2+c^2)\geq 4(ab+bc+ac)=4$
Ta có đpcm.
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1+1+1}{a+b+c}=\dfrac{3}{a+b+c}=\dfrac{3}{1}=3\)
\(\Rightarrow a=b=c=\dfrac{1}{3}\)
\(\Rightarrow A=\dfrac{a^3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=a^3=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27}\)
Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) ⇒ \(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{a^2}\) = \(\dfrac{y^2}{b^2}\) = \(\dfrac{z^2}{c^2}\) = \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\) = \(\dfrac{x^2+y^2+z^2}{1}\) = \(x^2+y^2+z^2\) (1)
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\) = \(\dfrac{x+y+z}{1}\) = \(x+y+z\)
\(\dfrac{x}{a}\) = \(x+y+z\) ⇒ \(\dfrac{x^2}{a^2}\) = (\(x+y+z\))2 (2)
Từ (1) và (2) ta có :
\(\dfrac{x^2}{a^2}\) = \(x^2\) + y2 + z2 = ( \(x+y+z\))2 (đpcm)
⇒
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
= = = = = (1)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
= =
= ⇒ = ()2 (2)
Từ (1) và (2) ta có :
= + y2 + z2 = ( )2 (đpCm)
\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab.ac+abc+ab}\)
\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{a+1+ab}=1\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{c}{d}.\dfrac{c}{d}=\dfrac{a}{b}.\dfrac{c}{d}\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\)
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\left(1\right)\)
\(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2adbc+b^2c^2=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)
\(VP=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
Ta thấy: \(VT=VP\)
\(\Rightarrow\left(1\right)\) luôn đúng.
Có a2+b2+c2>=ab+bc+ca(bđt)
tương đương 1>=ab+bc+ca
Có (a+b+c)2=a2+b2+c2+2(ab+bc+ca)=1+2(ab+ca+bc)>=0
tương đương 2(ab+bc+ca)>= -1
tương đương ab+bc+ca>=\(\frac{-1}{2}\)
Có a2+b2+c2>=ab+bc+ca(bđt)
tương đương 1>=ab+bc+ca
Có (a+b+c)2=a2+b2+c2+2(ab+bc+ca)=1+2(ab+ca+bc)>=0
tương đương 2(ab+bc+ca)>= -1
tương đương ab+bc+ca>=