K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2019

\(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge2\sqrt{\frac{a^2}{a^2}}+2\sqrt{\frac{b^2}{b^2}}+2\sqrt{\frac{c^2}{c^2}}=6\)

Dấu = xảy ra khi a^4=b^4=c^4=1 <=> \(a=\pm1;b=\pm1;c\pm1\)

-> B = 3

5 tháng 9 2019

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow a+b=0\Leftrightarrow a=-b\)

\(\Rightarrow a^{23}+b^{23}=-b^{23}+b^{23}=0\)

Vậy \(\left(a^{23}+b^{23}\right)\left(a^{1995}+c^{1995}\right)=0\)