Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho các số a,b,c thỏa mã a.b.c = 1
Tính A = \(\frac{1}{a.b+a+1}+\frac{1}{b.c+b+1}+\frac{1}{c.a+c+1}\)
\(A=\)\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)
\(=\frac{c}{\left(ab+a+1\right)c}+\frac{ac}{\left(bc+b+1\right).ac}+\frac{1}{ca+c+1}\)
\(=\frac{c}{abc+ac+c}+\frac{ac}{abc^2+abc+ac}+\frac{1}{ca+c+1}\)
\(=\frac{c}{1+ac+c}+\frac{ac}{c+1+ac}+\frac{1}{ca+c+1}\)
\(=\frac{c+ac+1}{1+ac+c}=1\)
Bài 1:
\(S=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\\ =\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{b+1+bc}=\frac{bc+b+1}{bc+b+1}=1\)
Bài 2:
\(\frac{a}{5}+1=\frac{1}{b-1}\\ \Rightarrow \frac{a+5}{5}=\frac{1}{b-1}\\ \Rightarrow (a+5)(b-1)=5\)
Vì $a,b$ là số tự nhiên nên $a+5, b-1$ là số nguyên. Mà tích của chúng bằng 5 nên $a+5$ là ước của $5$ (1)
Vì $a$ là số tự nhiên nên $a+5$ là số tự nhiên và $a+5\geq 5$ (2)
Từ $(1); (2)\Rightarrow a+5=5$
$\Rightarrow a=0$
$b-1=\frac{5}{5}=1\Rightarrow b=2$
Giả sử a ≤ b ≤ c
⇒ ab + bc + ca ≤ 3bc.
Theo giả thiết abc < ab+ bc + ca (1) nên abc < 3bc
⇒a<3 mà a là số nguyên tố nên a = 2.
Thay a = 2 vào (1) được 2bc<2b+2c+bc
⇒bc<2(b+c) (2)
Vì b ≤ c⇒ bc < 4c ⇒ b < 4.
Vì b là số nguyên tố nên b = 2 hoặc b = 3.
Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý.
Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5
Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý
Giả sử a ≤ b ≤ c
⇒ ab + bc + ca ≤ 3bc.
Theo giả thiết abc < ab+ bc + ca (1) nên abc < 3bc
⇒a<3 mà a là số nguyên tố nên a = 2.
Thay a = 2 vào (1) được 2bc<2b+2c+bc
⇒bc<2(b+c) (2)
Vì b ≤ c⇒ bc < 4c ⇒ b < 4.
Vì b là số nguyên tố nên b = 2 hoặc b = 3.
Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý.
Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5
Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý
\(A=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)
\(=\frac{c}{c\left(1+a+ab\right)}+\frac{ac}{ac\left(1+b+bc\right)}+\frac{1}{1+c+ca}\)
\(=\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc^2}+\frac{1}{1+c+ca}\)
thay a.b.c=1 Ta đc:
\(a=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+a}\) cộng 3 phân số cùng mẫu c+ac+1
\(=\frac{c+ac+1}{c+ac+1}=1\)
tick cho mk vs nhé
Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)
Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5
Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý
\(A=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)\(=\frac{1}{ab+a+1}+\frac{a}{a\left(bc+b+1\right)}+\frac{abc}{ca+c+abc}\)
\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{a+1+ab}=1\)
Theo bài ra ta có: a.b.c = 1
=> a=1;b=1;c=1
Ta có: A = \(\frac{1}{a.b+a+1}\)\(+\frac{1}{b.c+b+1}+\frac{1}{c.a+c+1}\)\(=\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}\)\(+\frac{1}{1.1+1+1}\)
\(=\frac{1}{1+1+1}+\frac{1}{1+1+1}+\frac{1}{1+1+1}\)\(=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{3}{3}=1\)
Vậy A = 1