Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tổng nghịch đảo có dạng: \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}=\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{10.11}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{10}-\frac{1}{11}=\frac{1}{5}-\frac{1}{11}=\frac{6}{55}\)
1) 1/30+1/42+1/56+1/72+1/90+1/110
=1/5*6+1/6*7+1/7*8+1/8*9+1/9*10+1/10*11
=1/5-1/6+1/6-1/7+...+1/10-1/11
=1/5-1/11=11/55-5/55=6/55
1 số nghịch đảo thì bit rồi nhé
Bây gời ta có:
1/30+1/42+1/56+1/72+1/90+1/110
=1/5.6+1/6.7+1/7.8+1/8.9+1/9.10+1/10.11
=1-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11
=1-1/11
=10/11
Đó hiểu ko? ko hiểu chỗ nào thì hỏi mình nhé
a. Gọi phân số cần tìm là \(\frac{a}{b}\)
\(\Rightarrow\) Phân số nghịch đảo là \(\frac{b}{a}\)
Theo bài ra, ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow a^2-ab+b^2-ab\ge0\)
\(\Leftrightarrow a\left(a-b\right)+b\left(b-a\right)\ge0\)
\(\Leftrightarrow a\left(a-b\right)-b\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Vì (a-b)2 chắc chắn lớn hơn hoặc bằng 0
\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
Vậy tổng của một phân số dương với ghịch đảo của nó luôn lớn hơn hoặc bằng 2.
1) Gọi A là tổng các số ngịch đảo của các số đã cho, ta có:
\(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
A= \(\left(\frac{1}{2}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{11}\right)+\left(\frac{1}{11}-\frac{1}{14}\right)+\left(\frac{1}{14}-\frac{1}{17}\right)+\left(\frac{1}{17}-\frac{1}{20}\right)\)
=\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
=\(\frac{1}{2}-\frac{1}{20}\)
=\(\frac{9}{20}\)
6=-6
12=-12
20=-20
30=-30
42=--42
56=-56
72=-72
90=-90
110=-110
và tổng của các số đó =0
1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90+1/110
=1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+1/(6*7)+1/(8*9)+1/(9*10)+1/(10*11)
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11
=1/2-1/11
=9/22
tổng nghịch đảo của 30,42,56,72,90 là:
30+42+56+72+90=\(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)=\(\dfrac{1}{10}\)
kết quả mình chỉ viết gọn lại thôi nha.
gọi 2 phân số đó là \(\frac{a}{b}\)và \(\frac{c}{d}\)
Theo đầu bài ta có : \(\frac{a}{b}\)+ \(\frac{c}{d}\)= \(5.\left(\frac{a}{b}.\frac{c}{d}\right)\)
\(\Leftrightarrow\frac{ad+bc}{bd}=5.\frac{ac}{bd}\)\(\Leftrightarrow ad+bc=5ac\)
tổng các số nghịch đảo 2 phân số đó là :
\(\frac{b}{a}+\frac{d}{c}=\frac{bc+ad}{ac}=\frac{5ac}{ac}=5\)
Tổng nghịch đảo có dạng: \(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\)\(+\dfrac{1}{90}+\dfrac{1}{110}\) \(=\dfrac{1}{5.6}\)\(+\dfrac{1}{6.7}+...+\dfrac{1}{10.11}\)\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{10}-\dfrac{1}{11}\)\(=\dfrac{1}{5}-\dfrac{1}{11}=\dfrac{6}{55}\)