K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2021

Nguyễn Việt Lâm

15 tháng 8 2021

Số cần tìm có dạng \(\overline{abc}\left(a,b,c\in\left\{1;2;5;7;8\right\}\right)\)

c có 2 cách chọn

a có 4 cách chọn

b có 3 cách chọn

\(\Rightarrow\) Có \(2.3.4=24\) cách lập số thỏa mãn yêu cầu bài toán.

14 tháng 11 2017

Chọn B

Bước 1: ta xếp các số lẻ: có các số lẻ là 1,1,3,5 vậy có 5 ! 3 !  cách xếp.

Bước 2: ta xếp 3 số chẵn 2, 4, 6 xen kẽ 5 số lẻ trên có 6 vị trí để xếp 3 số vậy có A 6 3  cách xếp.

Vậy có  5 ! 3 ! A 6 3 = 2400 số thỏa mãn yêu cầu bài toán.

29 tháng 6 2017

Chọn D

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}

+ Số các số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng 

a b c d e ¯  (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau là 

(để ý: có 3 cách xếp sao cho ba chữ số chẵn đứng liền nhau là 

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng  0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau là 

(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là {b;c})

Suy ra, số các số tự nhiên thỏa đề ra là 

13 tháng 8 2019

Chọn A

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}

+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng  a b c d e ¯  (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là

(để ý: có 2 cách xếp 3 chữ số chẵn thỏa đề {a,b,c}, {c,d,e})

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng   0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là 

(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là  {b,c}).

Suy ra, số các số tự nhiên thỏa đề ra là 

26 tháng 9 2023

KO PHẢI  PHẢI LÀ CHỮ SỐ 0,1,5,7,8 MỚI ĐÚNG

 

26 tháng 1 2022

a) 

Gọi abcde là 5 chữ số khác nhau cần tìm

a-9cc

b \ {a} - 8cc

...

e \ {a,b,c,d} - 5cc

<=> 9*8*7*6*5=9P5=15120 số

b)

e {2,4,6,8} - 4cc

a \ {e} - 8cc

b \ {a,e} - 7cc

c \ {a,b,e} - 6cc

d \ {a,b,c,e} - 5cc

<=> 4 * 8P4 = 6720 số

 

NV
27 tháng 1 2022

a.

Có \(A_9^5=15120\) cách

b.

Gọi số đó là \(\overline{abcde}\) \(\Rightarrow e\) chẵn \(\Rightarrow e\) có 4 cách chọn

Bộ abcd có \(A_8^4=1680\) cách 

tổng cộng: \(4.1680=...\) cách

16 tháng 12 2020

Có 4 cách chọn chữ số hàng đơn vị

\(A^4_7\) cách chọn và sắp xếp 4 chữ số còn lại

=> Có \(4A^4_7=3360\) số được tạo thành.

16 tháng 9 2021

Gọi STN có 4 c/s cần tìm là : \(\overline{abcd}\)  ( \(a\ne0\) ) 

Do abcd chẵn nên d \(\in\left\{0;2;4;6;8\right\}\)

Với d = 0  ; có 9 cách chọn a ; 8 cách chọn b ; 7 cách chọn c

-> có : 9.8.7.1 = 504 ( cách ) 

Với d thuôc { 2 ; 4 ;  6 ; 8 } có 4 cách chọn d 

có 8 cách chọn a ; 8 cách chọn b ;  7 cách chọn c 

-> có : 4 . 8 . 8 . 7 = 1792 cách

Có : 504 + 1792 = 2296 cách 

19 tháng 2 2017

Vì x  là số chẵn nên d {0,2,4,6,8}

TH1: d = 0 có 1 cách chọn . a {1,2,4,5,6,8} \ {d}

Với mỗi cách chọn d ta có 6 cách chọn a {1,2,4,5,6,8}

Với mỗi cách chọn a;d ta có 5 cách chọn b {1,2,4,5,6,8} \ {a}

Với mỗi cách chọn a; b; d ta có  cách chọn c {1,2,4,5,6,8} \ {a,b}

Suy ra trong trường hợp này có 1.6.5.4 = 120  số.

Với mỗi cách chọn , do  nên ta có 5 cách chọn a {1,2,4,5,6,8} \ {d}

Với mỗi cách chọn  ta có 5 cách chọn b {1,2,4,5,6,8} \ {a}

Với mỗi cách chọn  ta có  cách chọn c {1,2,4,5,6,8} \ {a,b}

Suy ra trong trường hợp này có 4.5.5.4 = 400  số.

Vậy có tất cả 120 + 400 = 520 số cần lập.

Chọn D.

20 tháng 9 2018

Gọi x = a b c d  a,b,c,d ϵ {0,1,2,4,5,6,8}

Vì x là số chẵn nên d ϵ {0,,2,4,,6,8}

TH 1: d=0→ có 1 cách chọn d.

Với mỗi cách chọn d ta có 6 cách chọn a ϵ {1,2,4,5,6,8}

Với mỗi cách chọn a; d ta có 5 cách chọn b ϵ {1,2,4,5,6,8}\{a}

Với mỗi cách chọn a; b; d ta có 4 cách chọn c ϵ {1,2,4,5,6,8}\{a,b}

Suy ra trong trường hợp này có 1.6.5.4=120 số.

TH 2: d≠0→d ϵ {2,4,6,8}→ có 4 cách chọn d

Với mỗi cách chọn d, do a≠0 nên ta có 5 cách chọn

a ϵ {1,2,4,5,6,8}\{d}

Với mỗi cách chọn a, d ta có 5 cách chọn b ϵ {1,2,4,5,6,8}\{a}

Với mỗi cách chọn a; b; d ta có 4 cách chọn c ϵ {1,2,4,5,6,8}\{a,b}

Suy ra trong trường hợp này có 4.5.5.4 = 400 số.

Vậy có tất cả 120+400=520 số cần lập.

Chọn đáp án B.

17 tháng 2 2017

Đặt A = {1, 2, 3, 4, 5, 6}.

n(A) = 6.

có 720 số tự nhiên có 6 chữ số được lập từ các số trên

Việc lập các số chẵn là việc chọn các số có tận cùng bằng 2, 4 hoặc 6.

Gọi số cần lập là  a b c d e f

+ Chọn f : Có 3 cách chọn (2 ; 4 hoặc 6)

+ Chọn e : Có 5 cách chọn (khác f).

+ Chọn d : Có 4 cách chọn (khác e và f).

+ Chọn c : Có 3 cách chọn (khác d, e và f).

+ Chọn b : Có 2 cách chọn (khác c, d, e và f).

+ Chọn a : Có 1 cách chọn (Chữ số còn lại).

⇒ Theo quy tắc nhân: Có 3 . 5 . 4 . 3 . 2 . 1   =   360 (cách chọn).

Vậy có 360 số chẵn, còn lại 720   –   360   =   360 số lẻ.