Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\Delta\)Px =m.\(\Delta\)vx = 9,1.10-31.2.106 = 1,82.10-24 (kg.m/s)
AD nguyên lý bất định Heisenberg: \(\Delta\)x.\(\Delta\)Px\(\ge\)\(\frac{h}{2.\Pi}\) với \(\frac{h}{2.\Pi}\)= 1,054.10-34
Suy ra: \(\Delta\)x \(\ge\)\(\frac{1,054.10^{-34}}{1,82.10^{-24}}\)= 5,79.10-11 m
b) \(\Delta\)P \(\ge\)\(\frac{1,054.10^{-34}}{10^{-5}}\)= 1,054.10-29 (kg.m/s)
Suy ra:\(\Delta\)vx = 1,054.10-27 (m/s)
AD nguyên lý bất định Heisenberg: Δx.ΔPx ≥ h/(4.Π) với h=6,625.10-34
a)Ta có: ΔPx =m.Δvx = 9,1.10-31.2.106 = 1,82.10-24 (kg.m/s)
=> Δx ≥ 6,625.10-34/(4.Π.1,82.10-24)= 2,8967.10-11 (m)
b) ΔPx = m. Δvx ≥ h/(4.Π.Δx )
=> m. Δvx ≥ 6,625.10-34/(4.Π.10-5) = 5,272.10-30
=> Δvx ≥ 5,272.10-30/0,01 = 5,272.10-28 (m/s)
phương trình dạng toán tử : \(\widehat{H}\)\(\Psi\) = E\(\Psi\)
Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)
thay vào từng bài cụ thể ta có :
a.sin(x+y+z)
\(\bigtriangledown\)2 f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)
=\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)
=\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)
= -3.sin(x+y+z)
\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.
b.cos(xy+yz+zx)
\(\bigtriangledown\)2 f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)
=\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)
=\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)
=- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))
=-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)
\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.
c.exp(x2+y2+z2)
Ta có : λo = 2300Ǻ = 2,3.10-7 (m). h= 6,625.10-34 (J.s), c = 3.108 m/s.
Emax=1,5( eV) = 1,5.1,6.10-19= 2,4.10-19(J)
Mặt khác: Theo định luật bảo toàn năng lượng và hiện tượng quang điện ta có công thức
(h.c)/ λ = (h.c)/ λo + Emax suy ra: λ=((h.c)/( (h.c)/ λo + Emax)) (1)
trong đó: λo : giới hạn quang điện của kim loại
λ: bước sóng của ánh sáng chiếu vào bề mặt kim loại để bứt electron ra khỏi bề mặt kimloại.
Emax: động năng ban đầu ( năng lượng của ánh sáng chiếu vào bề mặt kim loại).
Thay số vào (1) ta có:
λ = ((6,625.10-34.3.108)/((6,625.10-34.3.108)/(2,3.10-7) + (2,4.10-19)) = 1,8.10-7(m)
= 1800 Ǻ
Thầy xem hộ em lời giải của bài này ạ, em trình bày chưa được rõ ràng mong thầy sửa lỗi cho em ạ. em cám ơn thầy ạ!
Năng lượng cần thiết để làm bật e ra khỏi kim loại Vonfram là:
E===5,4eV
Để electron bật ra khỏi kim loại thì ánh sáng chiếu vào phải có bước sóng ngắn hơn bước sóngtấm kim loại. Mà năng lượng ánh chiếu vào kim loại có E1<E nên electron không thể bật ra ngoài
r: độ hấp phụ.
Có: r = V. (Co -C1) / m => r1 = 0,1.( 10-4 - 0,6.10-4) / 2 = 2.10-6 , tương tự có C2 = 0,4.10-4 => r2 = 1,5. 10-6 (mol/g).
Áp dụng pt: C/r = C/rmax + 1/rmax.k
ta được hệ: C1/r1 = C1/rmax + 1/rmax.k
C2/r2 = C2/rmax + 1/ rmax.k
Giải hệ đc: rmax = 6.10-6 , k = 8333,3.
k61 = 1/9600.ln(0,1/0,0854) = 1,644.10-5 (phút-1), k71 = 1/9600.ln(0,1/0,056) = 6,04.10-5 (phút-1).
Bạn Hằng phát hiện đúng rồi đấy.
Thầy rất hoan nghênh bạn Thịnh đã trả lời câu hỏi 2, nhưng câu này em làm chưa đúng. Ở bài này các em cần phải vận dụng phương trình BET để tính diện tích bề mặt riêng:
Sr = (Vm/22,4).NA.So. Sau khi thay số các em sẽ ra được đáp số.
E làm thế này đúng không ạ?
n(N2)=PV/RT=1*129*10^-3/(0.082*273)=5.76*10^-3 (mol)
Độ hấp phụ: S=n(N2)/m=5.76*10^-3/1=5.76*10^-3 (mol/g)
Diện tích bề mặt silicagel: S=N*So*J=6.023*10^23*16.2*10^-20*5.76*10^-3=562(m2/g)
Đáp án B
(c) Na+, Mg2+, Al3+ có cùng cấu hình electron và đều có tính oxi hóa yếu.
(e) Hỗn hợp Al và BaO (tỉ lệ mol tương ứng là 1 : 1) tan hoàn toàn trong nước dư.