Cho các phát biểu sau:

(a) Kim loài kiềm được điều chế...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

Đáp án C

(a) Sai. Kim loại kiềm được điều chế bằng phương pháp điện phân nóng chảy muối halogenua tương ứng.

(b) Đúng.

(c) Sai. Độ dinh dưỡng của phân kali được đánh giá theo phần trăm khối lượng K2O tương ứng với lượng K có trong thành phần của phân bón.

(d) Đúng.

(e) Sai. Ví dụ: Ion Fe2+ có tính khử: Fe2+ + Ag+ à Fe3+ + Ag

26 tháng 1 2015

Câu trả lời của bạn Vũ Thị Ngọc Chinh câu a và câu b tớ thấy đúng rồi, ccâu c ý tính năng lượng của photon ứng với vạch giới hạn của dãy paschen tớ tính thế này: 

Khi chuyển từ mức năng lượng cao \(E_{n'}\)về mức năng lượng thấp hơn  \(E_n\)năng lượng của e giảm đi một lượng đứng bằng năng lượng cảu một photon nên trong trương hợp này đối vs nguyên tử H thì nang lượng photon ứng với vạch giới hạn của dãy paschen là:

                                         \(\Delta E=E_{n'}-E_n=\left(0-\left(-13,6.\frac{1}{n^2}\right)\right)=13,6.\frac{1}{3^2}=1.51\left(eV\right)\)

Không biết đúng không có gì sai góp ý nhé!!

a. pt S ở trạng thái dừng:

           \(\bigtriangledown\)2\(\Psi\)+\(\frac{8m\pi^2}{h^2}\)(E-U)\(\Psi\)=0

đối với Hidro và các ion giống nó, thế năng tương tác hút giữa e và hạt nhân:

            U=-\(\frac{Z^2_e}{r}\)

\(\rightarrow\)pt Schrodinger của nguyên tử Hidro và các ion giống nó:

            \(\bigtriangledown\)2\(\Psi\)+\(\frac{8m\pi^2}{h^2}\)(E+\(\frac{Z^2_e}{r}\))=0

b.Số sóng : \(\widetilde{\nu}\)=\(\frac{1}{\lambda}\)=\(\frac{1}{4861,3.10^{-10}}\)

ta có :  \(\widetilde{\nu}\)=Rh.(\(\frac{1}{n^2}\)-\(\frac{1}{n'^2}\)

  \(\rightarrow\)Hằng số Rydberg:

           Rh=\(\frac{\widetilde{v}}{\frac{1}{n^2}-\frac{1}{n'^2}}\)=\(\frac{1}{\lambda.\left(\frac{1}{n^2}-\frac{1}{n'^2}\right)}\)

  vạch màu lam:n=3 ; n'=4

           Rh=\(\frac{1}{4861,3.10^{-10}.\left(\frac{1}{2^2}-\frac{1}{4^2}\right)}\)=10971.10 m-1=109710 cm-1.

c.Dãy Paschen :vạch phổ đầu tiên n=3 ; vạch phổ giới hạn n'=\(\infty\)

Số sóng : \(\widetilde{\nu}\)= Rh.(\(\frac{1}{n^2}\)-\(\frac{1}{n'^2}\))

              =109710.(\(\frac{1}{3^2}\)-\(\frac{1}{\infty^2}\))=12190 cm-1.

Năng lượng của photon ứng với vạch giới hạn của dãy Paschen:

                  En=-13,6.\(\frac{1}{n^2}\)=-13,6.\(\frac{1}{\infty}\)=0.

13 tháng 1 2015

Ta có :  λo = 2300Ǻ = 2,3.10-7 (m).  h= 6,625.10-34 (J.s),  c = 3.108 m/s.
            Emax=1,5( eV) = 1,5.1,6.10-19= 2,4.10-19(J)

Mặt khác: Theo định luật bảo toàn năng lượng và hiện tượng quang điện ta có công thức
                  (h.c)/  λ = (h.c)/ λ
o  + Emax suy ra:  λ=((h.c)/( (h.c)/ λo  + Emax)) (1)
trong đó:
λo : giới hạn quang điện của kim loại
               
λ: bước sóng của ánh sáng chiếu vào bề mặt kim loại để bứt electron ra khỏi bề mặt kimloại.
                Emax: động năng ban đầu ( năng lượng của ánh sáng chiếu vào bề mặt kim loại).

Thay số vào (1) ta có:                                                            
                 λ = ((6,625.10-34.3.108)/((6,625.10-34.3.108)/(2,3.10-7) + (2,4.10-19)) = 1,8.10-7(m)
                    = 1800 Ǻ

Thầy xem hộ em lời giải của bài này ạ, em trình bày chưa được rõ ràng mong thầy sửa lỗi cho em ạ. em cám ơn thầy ạ!

13 tháng 1 2015

Năng lượng cần thiết để làm bật  e ra khỏi kim loại Vonfram là:

                            E===5,4eV

Để electron bật ra khỏi kim loại thì ánh sáng chiếu vào phải có bước sóng ngắn hơn bước sóngtấm kim loại. Mà năng lượng ánh chiếu vào kim loại có E1<E nên electron không thể bật ra ngoài

13 tháng 1 2015

Ta có hệ thức De_Broglie: λ= h/m.chmc


Đối với vật thể có khối lượng m và vận tốc v ta có: λ= h/m.vhmv

a)     Ta có m=1g=10-3kg và v=1,0 cm/s=10-2m/s

→ λ= 6,625.1034103.102=6,625.10-29 (m)

b)    Ta có m=1g=10-3kg và v =100 km/s=10m

→ λ= 6,625.1034103.105= 6,625.10-36 (m)

c)     Ta có mHe=4,003 = 4,003. 1,66.10-24. 10-3=6,645.10-27 kg  và v= 1000m/s

→ λ= 6,625.10344,03.1000=9.97.10-11 (m)

13 tháng 1 2015

a) áp dụng công thức 

\(\lambda=\frac{h}{mv}=\frac{6,625.10^{-34}}{10^{-3}.10^{-2}}=6,625.10^{-29}\left(m\right)\)

b)

\(\lambda=\frac{6,625.10^{-34}}{10^{-3}.100.10^3}=6,625.10^{-36}\left(m\right)\)

c)

\(\lambda=\frac{6,625.10^{-34}}{4,003.1000}=1,65.10^{-37}\left(m\right)\)

phương trình dạng toán tử :  \(\widehat{H}\)\(\Psi\) = E\(\Psi\)

Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)

thay vào từng bài cụ thể ta có :

a.sin(x+y+z)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)

                =\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)

                =\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)

                = -3.sin(x+y+z)

\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.

b.cos(xy+yz+zx)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)

                =\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)

                =\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)

                =- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))

                =-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)

\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.

c.exp(x2+y2+z2)

\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))exp(x2+y2+z2)
                =\(\frac{\partial^2}{\partial x^2}\)exp(x2+y2+z2)+\(\frac{\partial^2}{\partial y^2}\)exp(x2+y2+z2) +\(\frac{\partial^2}{\partial z^2}\)exp(x2+y2+z2)
                =\(\frac{\partial}{\partial x}\)2x.exp(x2+y2+z2)+\(\frac{\partial}{\partial y}\)2y.exp(x2+y2+z2)+\(\frac{\partial}{\partial z}\)2z.exp(x2+y2+z2)
                =2.exp(x2+y2+z2) +4x2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4y2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4z2.exp(x2+y2+z2)
                =(6+4x2+4y2+4z2).exp(x2+y2+z2)
\(\Rightarrow\)exp(x2+y2+z2không là hàm riêng của hàm laplace.
d.ln(xyz)
\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))ln(xyz)
                =\(\frac{\partial^2}{\partial x^2}\)ln(xyz)+\(\frac{\partial^2}{\partial y^2}\)ln(xyz)+\(\frac{\partial^2}{\partial z^2}\)ln(x+y+z)
                =\(\frac{\partial}{\partial x}\)yz.\(\frac{1}{xyz}\)\(\frac{\partial}{\partial y}\)xz.\(\frac{1}{xyz}\) + \(\frac{\partial}{\partial z}\)xy.\(\frac{1}{xyz}\)
                =\(\frac{\partial}{\partial x}\)\(\frac{1}{x}\) + \(\frac{\partial}{\partial y}\)\(\frac{1}{y}\)+\(\frac{\partial}{\partial z}\)\(\frac{1}{z}\)
                = - \(\frac{1}{x^2}\)\(\frac{1}{y^2}\)\(\frac{1}{z^2}\)
\(\Rightarrow\) ln(xyz) không là hàm riêng của hàm laplace.
 
 
14 tháng 1 2015

đáp án D

13 tháng 1 2015

Ta có: cos 45 \(\frac{\text{ λ}}{\text{ λ}'}=\frac{\text{ λ}}{0,22}\)

​=> λ = cos450.0,22 = 0.156Ǻ

3 tháng 2 2015

Thưa thầy, thầy chữa bài này được không ạ. Thầy ra lâu rồi nhưng chưa có đáp án đúng 

21 tháng 1 2015

Xác suất tìm thấy vi hạt tính bằng công thức: P(b,c)= \(\int\limits^c_b\)\(\psi\)2dx

Thay ᴪ = sqrt(2/a).sin(ᴫx/a). Giải tích phân ta đươc: 

P(b,c)= \(\frac{c-b}{a}-\frac{1}{2\pi}\left(sin\frac{2\pi c}{a}-sin\frac{2\pi b}{a}\right)\)

a) x = 4,95 ÷ 5,05 nm

P(4.95;5.05)= \(\frac{0,1}{10}-\frac{1}{2\pi}\left(sin\frac{2\pi.5,05}{10}-sin\frac{2\pi.4,95}{10}\right)\)= 0.02

Tương tự với phần b, c ta tính được kết quả:

b) P= 0.0069

c)P=6,6.10-6


 

Ta có:Xác suất tìm thấy vi hạt là:

P(x1;x2)=\(\int\limits^{x_2}_{x_1}\Psi^2d_x\)=\(\int\limits^{x_2}_{x_1}\frac{2}{a}\sin^2\left(\frac{\pi}{a}.x\right)d_x\)=\(\frac{2}{a}.\int\limits^{x_2}_{x_1}\sin^2\left(\frac{\pi}{a}.x\right)d_x\)=\(-\frac{1}{2}.\frac{2}{a}\int\limits^{x_2}_{x_1}\left(1-2\sin^2\left(\frac{\pi}{a}.x\right)-1\right)d_x\)

=\(-\frac{1}{a}\int\limits^{x_2}_{x_1}\cos\left(\frac{2\pi}{a}.x\right)d_x+\frac{1}{a}\int\limits^{x_2}_{x_1}d_x\)=\(\frac{1}{a}\left(x_2-x_1-\frac{a}{2\pi}\left(\sin\left(\frac{2\pi}{a}.x_2\right)-\sin\left(\frac{2\pi}{a}.x_1\right)\right)\right)\)

a)x=4,95\(\div\)5,05nm

Xác suất tìm thấy vi hạt là:

P\(\left(4,95\div5,05\right)\)=\(\frac{1}{10}\left(5,05-4,95-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.5,05\right)-\sin\left(\frac{2\pi}{10}.4,95\right)\right)\right)\)=0,019

b)Xác suất tìm thấy vi hạt là:

P(1,95\(\div\)2,05)=\(\frac{1}{10}\left(2,05-1,95-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.2,05\right)-\sin\left(\frac{2\pi}{10}.1,95\right)\right)\right)\)=0,0069

c)Xác suất tìm thấy vi hạt là:

P(9,9\(\div\)10)=\(\frac{1}{10}\left(10-9,9-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.10\right)-\sin\left(\frac{2\pi}{10}.9,9\right)\right)\right)\)=6,57\(\times10^{-6}\)

20 tháng 1 2015

Theo đề bài ta có: me= 9,10-31 (kg); h= 6,625.10-34\(\pi=3,14\) ;sai số tọa độ theo phương x là : \(\Delta x=\text{1Ǻ}=10^{-10}\left(m\right)\)

Hệ thức bất định Heisenberg ta có: \(\Delta x.\Delta p_x\ge\frac{h}{2.\pi}\)

Vậy thay số ta có độ bất định về động lượng của electron theo phương x xác định là : \(\Delta p_x=\frac{h}{2.\pi.\Delta x}=\frac{6,6.25.10^{-34}}{2.3,14.10^{-10}}=1,055.10^{-24}\left(kg.m.s^{-1}\right)\)

Mặt khác ta có: \(\Delta p_x=\Delta v_x.m=\Delta v_x.m_e\)

Suy ra ta có độ bất định về tốc độ của electron theo phương x là:   \(\Delta v_x=\frac{\Delta p_x}{m_e}=\frac{1,055.10^{-24}}{9,1.10^{-31}}=1159270\left(m.s^{-1}\right)\approx1,16.10^6\left(m.s^{-1}\right)\)

 

 

21 tháng 1 2015

theo bài ta có: \(\Delta x=1\text{Ǻ}=10^{-10}\left(m\right)\)

áp dụng hệ thức Heisenberg ta có: \(\Delta x.\Delta Px\ge\frac{h}{2\pi}\)

với \(\frac{h}{2\pi}=1,054.10^{-34}\)

\(\Rightarrow\Delta Px\ge\frac{h}{2\pi.\Delta x}=\frac{1,054.10^{-34}}{10^{-10}}=1,054.10^{-24}\left(kg.m.s^{-1}\right)\)

mặt khác ta lại có: \(\Delta Px=m.\Delta vx\Rightarrow\Delta vx=\frac{\Delta Px}{m}=\frac{1,054.10^{-24}}{9,1.10^{-31}}=1,16.10^6\left(\frac{m}{s}\right)\)

Câu 7: Muốn tạo thành 9 . 10 ^ -23 phân tử NH3 cần bao nhiêu phân tử H2,cần bao nhiêu phân tử N2 ,cần bao nhiêu mol N,bao nhiêu mol H2.Tạo ra bao nhiêu lít NH3 biết các khí và phản ứng xảy ra như sau:  N2 +  3H2 <-----> 2NH3Câu 8: Cho kim loại Al tác dụng với CuSO4 thu được Al2 (SO4)3 và Cua) Viết phản ứng xảy rab) Cho 12,15g Al vào dung dịch có chứa 54g CuSO4,Chất nào còn dư sau phản ứng và khối lượngc) Lọc...
Đọc tiếp

Câu 7: Muốn tạo thành 9 . 10 ^ -23 phân tử NH3 cần bao nhiêu phân tử H2,cần bao nhiêu phân tử N2 ,cần bao nhiêu mol N,bao nhiêu mol H2.Tạo ra bao nhiêu lít NH3 biết các khí và phản ứng xảy ra như sau:

 N2 +  3H2 <-----> 2NH3

Câu 8: Cho kim loại Al tác dụng với CuSO4 thu được Al2 (SO4)3 và Cu

a) Viết phản ứng xảy ra

b) Cho 12,15g Al vào dung dịch có chứa 54g CuSO4,Chất nào còn dư sau phản ứng và khối lượng

c) Lọc bỏ các chất rắn rồi đem cô cạn dung dịch thu được bao nhiêu gam muối khan

Bài 9: Dùng khí CO để khử Fe3O4 và hiđro khử Fe2O3,khối lượng sắt thu được là 226g.Khi sinh ra từ các phản ứng trên CO2 được dẫn vào nước vôi trong dư,xuất hiện 200g kết tủa trắng

a) Tính thể tích H2 và CO (đktc) đã tham gia phản ứng

b)Tính khối lượng mỗi oxit đã phản ứng

2
8 tháng 1 2016

đề đâu???bucminhlolang

9 tháng 1 2016

Ba câu đấy bạn

12 tháng 1 2015

a) Ta có: \(\Delta\)P=m.\(\Delta\)v= 9,1.10-31.2.106 = 1,82.10-24 (kg.m/s)

AD nguyên lý bất định Heisenberg: \(\Delta\)x.\(\Delta\)Px\(\ge\)\(\frac{h}{2.\Pi}\) với \(\frac{h}{2.\Pi}\)= 1,054.10-34

Suy ra: \(\Delta\)\(\ge\)\(\frac{1,054.10^{-34}}{1,82.10^{-24}}\)= 5,79.10-11 m

b) \(\Delta\)\(\ge\)\(\frac{1,054.10^{-34}}{10^{-5}}\)= 1,054.10-29 (kg.m/s)

Suy ra:\(\Delta\)vx = 1,054.10-27 (m/s)

12 tháng 1 2015

AD nguyên lý bất định Heisenberg: Δx.ΔPx  h/(4.Π) với h=6,625.10-34

a)Ta có: ΔP=m.Δv= 9,1.10-31.2.106 = 1,82.10-24 (kg.m/s)

=> Δ 6,625.10-34/(4.1,82.10-24)= 2,8967.10-11  (m)

b) ΔPx = m. Δvx  h/(4.Π.Δx )    

=> m. Δvx   6,625.10-34/(4.10-5) = 5,272.10-30

=> Δvx  5,272.10-30/0,01 = 5,272.10-28 (m/s)