Cho các phát biểu sau :

(1) Phenol tan vô hạn trong nướ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2019

Đáp án : B

(1) Phenol tan vô hạn trong nước ở 660C

Đúng

(2) Phenol có lực axit mạnh hơn ancol etylic

 Đúng

(3) Phản ứng thế vào benzen dễ hơn phản ứng thế vào nhân thơm của phenol

 Sai. Phản ứng thế vào benzen khó hơn

(4) Phenol tan tốt trong etanol

Đúng

(5) Phenol làm quí tím hóa đỏ

Sai. Phenol không làm đổi màu quì tím

(6) Phenol phản ứng được với Brom ở điều kiện thường

Đúng

15 tháng 4 2018

Đáp án C

(1) Phenol tan vô hạn trong nước ở 66oC.Đúng – Theo SGK

(2) Phenol có lực axit mạnh hơn ancol etylic.Đúng

(3) Phản ứng thế vào benzen dễ hơn phản ứng thế vào nhân thơm của phenol. Sai

(4) Phenol tan tốt trong etanol.Đúng – Theo SGK

(5) Phenol làm quỳ tím hóa đỏ.Sai – Theo SGK

(6) Phenol có thể phản ứng với NaOH còn etanol thì không. Đúng

12 tháng 7 2017

Đáp án B

Định hướng tư duy giải

(1). Đúng theo SGK lớp 11.

(2). Đúng vì phenol tác dụng được với NaOH còn ancol thì không.

(3). Sai vì phenol có phản ứng với nước Br2 còn benzen thì không.

(4). Đúng theo SGK lớp 11.

(5). Sai vì lực axit của phenol rất yếu.

(6). Đúng theo SGK lớp 11.

20 tháng 5 2017

Chọn B

1,5,4,6

29 tháng 12 2014

Bài này đúng rồi

17 tháng 12 2014

Thầy rất hoan nghênh bạn Thịnh đã trả lời câu hỏi 2, nhưng câu này em làm chưa đúng. Ở bài này các em cần phải vận dụng phương trình BET để tính diện tích bề mặt riêng:

Sr = (Vm/22,4).NA.So. Sau khi thay số các em sẽ ra được đáp số.

17 tháng 12 2014

E làm thế này đúng không ạ?

n(N2)=PV/RT=1*129*10^-3/(0.082*273)=5.76*10^-3 (mol)

Độ hấp phụ: S=n(N2)/m=5.76*10^-3/1=5.76*10^-3 (mol/g)

Diện tích bề mặt silicagel: S=N*So*J=6.023*10^23*16.2*10^-20*5.76*10^-3=562(m2/g)

21 tháng 12 2015

HD:

a) Fe + 2HCl ---> FeCl2 + H2

b) Số mol Fe = 11,2/56 = 0,2 mol. Số mol HCl = 0,4 mol nên m(HCl) = 36,5.0,4 = 14,6 g.

Số mol FeCl2 = số mol H2 = số mol Fe = 0,2 mol. 

m(FeCl2) = 127.0,2 = 25,4 g; V(H2) = 0,2.22,4 = 4,48 lít.

29 tháng 10 2018

Các trường hợp thỏa mãn: 1 – 2 - 3

ĐÁP ÁN B

13 tháng 11 2015

Các phương trình phản ứng có thể xảy ra như sau:

Al   +   3AgNO3 \(\rightarrow\) Al(NO3)3 + 3Ag (1)

0,1/3    0,1 mol

2Al(dư) + 3Cu(NO3)2 \(\rightarrow\) 2Al(NO3)3 + 3Cu (2)

0,2/3        0,1 mol

Zn + Cu(NO3)2 (dư) \(\rightarrow\) Zn(NO3)2 + Cu (3)

0,1     0,1 mol

phương trình dạng toán tử :  \(\widehat{H}\)\(\Psi\) = E\(\Psi\)

Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)

thay vào từng bài cụ thể ta có :

a.sin(x+y+z)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)

                =\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)

                =\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)

                = -3.sin(x+y+z)

\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.

b.cos(xy+yz+zx)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)

                =\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)

                =\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)

                =- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))

                =-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)

\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.

c.exp(x2+y2+z2)

\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))exp(x2+y2+z2)
                =\(\frac{\partial^2}{\partial x^2}\)exp(x2+y2+z2)+\(\frac{\partial^2}{\partial y^2}\)exp(x2+y2+z2) +\(\frac{\partial^2}{\partial z^2}\)exp(x2+y2+z2)
                =\(\frac{\partial}{\partial x}\)2x.exp(x2+y2+z2)+\(\frac{\partial}{\partial y}\)2y.exp(x2+y2+z2)+\(\frac{\partial}{\partial z}\)2z.exp(x2+y2+z2)
                =2.exp(x2+y2+z2) +4x2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4y2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4z2.exp(x2+y2+z2)
                =(6+4x2+4y2+4z2).exp(x2+y2+z2)
\(\Rightarrow\)exp(x2+y2+z2không là hàm riêng của hàm laplace.
d.ln(xyz)
\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))ln(xyz)
                =\(\frac{\partial^2}{\partial x^2}\)ln(xyz)+\(\frac{\partial^2}{\partial y^2}\)ln(xyz)+\(\frac{\partial^2}{\partial z^2}\)ln(x+y+z)
                =\(\frac{\partial}{\partial x}\)yz.\(\frac{1}{xyz}\)\(\frac{\partial}{\partial y}\)xz.\(\frac{1}{xyz}\) + \(\frac{\partial}{\partial z}\)xy.\(\frac{1}{xyz}\)
                =\(\frac{\partial}{\partial x}\)\(\frac{1}{x}\) + \(\frac{\partial}{\partial y}\)\(\frac{1}{y}\)+\(\frac{\partial}{\partial z}\)\(\frac{1}{z}\)
                = - \(\frac{1}{x^2}\)\(\frac{1}{y^2}\)\(\frac{1}{z^2}\)
\(\Rightarrow\) ln(xyz) không là hàm riêng của hàm laplace.
 
 
14 tháng 1 2015

đáp án D