Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đơn giản là không có chữ gì về định lý a và b trên câu hỏi của bạn.=.='
Em học lớp 8 nên không chắc lắm, vì đội tuyển có dạng này rồi nên em giúp chị nhé :
Áp dụng BĐT Cauchy cho hai số a,b dương ta có :
\(\left(a+b\right)\ge2\cdot\sqrt{ab}\) (1)
\(\frac{1}{a}+\frac{1}{b}\ge2\cdot\sqrt{\frac{1}{ab}}\) (2)
Nhân vế với vế của BĐT (1) và (2) ta được :
\(\left(a+b\right)\left(\frac{1}{b}+\frac{1}{b}\right)\ge2\cdot\sqrt{ab}\cdot2\cdot\sqrt{\frac{1}{ab}}=4\)
Dấu "=" xảy ra \(\Leftrightarrow a=b\) (đpcm)
Mệnh đề A sai (ví dụ \(x=-1\Rightarrow x^3< x^2\))
Phủ định: \(\overline{A}="\exists x\in R:x^3\le x^2"\)
Mệnh đề B đúng, ví dụ \(x=0\)
Phủ định: \(\overline{B}="\forall x\in N;x⋮̸x+1"\)
Bài 1:
a/ Với \(x=0\Rightarrow0-0+1>0\) đúng
Vậy mệnh đề đúng
Phủ định: \(\forall x\in R;x^3-x^2+1\le0\)
Hoặc: \(∄x\in R,x^3-x^3+1>0\)
b/ \(x^4-x^2+1=\left(x^2+1\right)^2-3x^2=\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)
Vậy mệnh đề đã cho là đúng
Phủ định: \(\exists x\in R,x^4-x^2+1\ne\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)
Câu 2:
a/ Với \(x=0\Rightarrow0>-2\) nhưng \(0^2< 4\)
\(\Rightarrow\) Mệnh đề sai
b/ Mệnh đề đúng do \(x\in N\Rightarrow x\ge0\)
\(x>2\Rightarrow x^2>4\) (2 vế của BĐT đều không âm thì có thể bình phương 2 vế)
Câu 3:
P là mệnh đề đúng
\(P:\) "\(\forall x\in R,x\in Q\Rightarrow2x\in Q\)"
\(\overline{P}:\) "\(\exists x\in R,x\in Q\Rightarrow2x\notin Q\)"
\(\overline{P}\) là mệnh đề sai
Chứng minh P đúng:
Do x hữu tỉ, đặt \(x=\frac{a}{b}\) với a; b là các số nguyên \(\left(a;b\right)=1\) và \(b\ne0\)
\(\Rightarrow2x=\frac{2a}{b}\)
Do a nguyên \(\Rightarrow2a\) nguyên \(\Rightarrow\frac{2a}{b}\) hữu tỉ
b/ Mệnh đề đảo của P:
" Với mọi số thực x, nếu 2x là số hữu tỉ thì x là số hữu tỉ"
Chứng minh tương tự như trên
c/ "Với mọi số thực x thì x là số hữu tỉ khi và chỉ khi 2x là số hữu tỉ"
Bài 4:
a/ Là mệnh đề sai, ví dụ \(x=1;y=1\)
b/ Là mệnh đề đúng, ví dụ: \(x=1;y=1\)
a: Điều kiện cần và đủ để n2 chia hết cho 5 là n chia hết cho 5
Vì nếu n chia hết cho 5 thì n=5k
\(n^2=25k^2=5\cdot5k^2⋮5\)
b: Điều kiện cần và đủ để n2 chia hết cho 5 là n2+1 không chia hết cho5 và n2-1 không chia hết cho 5