Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xét phương trình hoành độ giao điểm : \(mx-4=-mx-4\)
\(\Leftrightarrow2mx=0\)
\(\Leftrightarrow x=0\)
\(\Rightarrow y=-4\)
=> Tọa độ điểm ( 0; - 4 )
- d1 cắt trục hoành tại điểm : \(\left(\dfrac{4}{m};0\right)\)
- d2 cắt trục hoành tại điểm : \(\left(-\dfrac{4}{m};0\right)\)
=> Tam giác đó là tam giác cân .
\(\Rightarrow S=\dfrac{1}{2}.\left|-4\right|.\left|\dfrac{8}{m}\right|=\left|\dfrac{16}{m}\right|>8\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{16}{m}< -8\\\dfrac{16}{m}>8\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m\in\left(-2;0\right)\\m\in\left(0;2\right)\end{matrix}\right.\)
Vậy \(S=\left\{1\right\}\)
Do A thuộc d1 nên tọa độ có dạng \(A\left(a;3a-3\right)\)
Do B thuộc d2 nên tọa độ có dạng: \(B\left(b;-b-2\right)\)
Áp dụng công thức trung điểm:
\(\Rightarrow\left\{{}\begin{matrix}a+0=2b\\3a-3+2=2\left(-b-2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-2b=0\\3a+2b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{3}{4}\\b=-\dfrac{3}{8}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}A\left(-\dfrac{3}{4};-\dfrac{21}{4}\right)\\B\left(-\dfrac{3}{8},-\dfrac{13}{8}\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{AB}=\left(\dfrac{3}{8};\dfrac{29}{8}\right)\)
Phương trình d có dạng:
\(29x-3\left(y-2\right)=0\Leftrightarrow29x-3y+6=0\)
(d) đi qua A, B => \(\overrightarrow{u_d}\) => \(\overrightarrow{n_d}\) => phương trình (d) biết vtpt và điểm đi qua
a. Gọi M là giao điểm của d1 và d2 => Tọa độ M là nghiệm của hệ:
\(\left\{{}\begin{matrix}2x+y-2=0\\x-y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{3}\\y=\frac{-4}{3}\end{matrix}\right.\) => M\(\left(\frac{5}{3};\frac{-4}{3}\right)\)
b. A ∈ d1=> A(a; 2 - 2a) ; B ∈ d2 => B (b ; b - 3)
Theo đề, ta có hệ: \(\left\{{}\begin{matrix}a+b=4\\-2a+b-1=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{-5}{3}\\b=\frac{17}{3}\end{matrix}\right.\)
=> A(\(\frac{-5}{3};\frac{16}{3}\)) ; B(\(\frac{17}{3};\frac{8}{3}\))
=> (d): 4x + 11y - 52 = 0
b: Tọa độ A là:
y=0 và 3x-1=0
=>x=1/3 và y=0
Tọa độ B là:
y=0 và 3-x=0
=>x=3 và y=0
Tọa độ C là:
3x-1=-x+3 và y=3x-1
=>x=1 và y=2
c: tan a=3
nên a=71 độ
Lời giải:
Vì $A\in (d_1)$ nên gọi tọa độ của $A$ là $(a, 2a-2)$
Vì $B\in (d_2)$ nên gọi tọa độ của $B$ là $(b, -b-3)$
$M$ là trung điểm của $AB$ nên:
\(3=x_M=\frac{x_A+x_B}{2}=\frac{a+b}{2}\Rightarrow a+b=6(1)\)
\(0=y_M=\frac{y_A+y_B}{2}=\frac{2a-2-b-3}{2}\Rightarrow 2a-b=5(2)\)
Từ $(1); (2)\Rightarrow a=\frac{11}{3}; b=\frac{7}{3}$
Khi đó: $A=(\frac{11}{3}, \frac{16}{3})$
Vì $A, M\in (d)$ nên VTCP của (d) là $\overrightarrow{MA}=(\frac{2}{3}, \frac{16}{3})$
$\Rightarrow \overrightarrow{n_d}=(\frac{-16}{3}, \frac{2}{3})$
PTĐT $(d)$ là:
$\frac{-16}{3}(x-3)+\frac{2}{3}(y-0)=0$
$\Leftrightarrow -8x+y+24=0$
\(d_1\) nhận \(\overrightarrow{n_1}=\left(1;0\right)\) là 1 vtpt
\(d_2\) nhận \(\overrightarrow{n_2}=\left(m;-1\right)\) là 1 vtpt
Để góc giữa 2 đường thẳng bằng 45 độ
\(\Rightarrow cos\left(d_1;d_2\right)=cos45^0=\dfrac{\left|1.m-0.1\right|}{\sqrt{1^2+0^2}.\sqrt{m^2+\left(-1\right)^2}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{2}}=\dfrac{\left|m\right|}{\sqrt{m^2+1}}\Leftrightarrow m^2+1=2m^2\)
\(\Rightarrow m=\pm1\)
Có 2 giá trị m
a) Với x = 2 ⇒ y = 1/2 x = 1/2 .2 = 1 ⇒ Mo (2;1)
x = 6 ⇒ y = 1/2 x = 1/2 .6 = 3 ⇒ M (6;3)
b) = (4;2) = 2(2;1) = 2u→
Vậy cùng phương với u→