Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét câu A, hiển nhiên khi \(n\rightarrow+\infty\) thì \(a_n=\sqrt{n^3+n}\rightarrow+\infty\) nên dãy (an) không bị chặn.
Ở câu C, lấy n chẵn và cho \(n\rightarrow+\infty\) thì dãy (cn) cũng sẽ tiến tới \(+\infty\). Do đó dãy (cn) cũng là 1 dãy không bị chặn.
Ở câu B, ta xét hàm số \(f\left(x\right)=x^2+\dfrac{1}{x}\) trên \(\left[1;+\infty\right]\), ta thấy \(f'\left(x\right)=2x-\dfrac{1}{x^2}\) \(=\dfrac{2x^3-1}{x^2}\) \(=\dfrac{x^3+x^3-1}{x^2}>0,\forall x\ge1\) . Do đó \(f\left(x\right)\) đồng biến trên \(\left[1;+\infty\right]\) và do đó cũng đồng biến trên \(ℕ^∗\). Nói cách khác, (bn) là dãy tăng . Như vậy, nếu bn bị chặn thì tồn tại giới hạn hữu hạn. Giả sử \(\lim\limits_{n\rightarrow+\infty}b_n=L>1\). Chuyển qua giới hạn, ta được \(L=\lim\limits_{n\rightarrow+\infty}\left(n^2+\dfrac{1}{n}\right)=+\infty\), vô lí. Vậy (bn) không bị chặn trên.
Còn lại câu D. Ta thấy với \(n\inℕ^∗\) thì hiển nhiên \(d_n>0\). Ta thấy \(d_n=\dfrac{3n}{n^3+2}=\dfrac{3n}{n^3+1+1}\le\dfrac{3n}{3\sqrt[3]{n^3.1.1}}=1\), với mọi \(n\inℕ^∗\). Vậy, (dn) bị chặn
\(\Rightarrow\) Chọn D.
a.
\(\Leftrightarrow na_{n+2}-na_{n+1}=2\left(n+1\right)a_{n+1}-2\left(n+1\right)a_n\)
\(\Leftrightarrow\dfrac{a_{n+2}-a_{n+1}}{n+1}=2.\dfrac{a_{n+1}-a_n}{n}\)
Đặt \(b_n=\dfrac{a_{n+1}-a_n}{n}\Rightarrow\left\{{}\begin{matrix}b_1=\dfrac{a_2-a_1}{1}=1\\b_{n+1}=2b_n\end{matrix}\right.\) \(\Rightarrow b_n=2^{n-1}\Rightarrow a_{n+1}-a_n=n.2^{n-1}\)
\(\Leftrightarrow a_{n+1}-\left[\dfrac{1}{2}\left(n+1\right)-1\right]2^{n+1}=a_n-\left[\dfrac{1}{2}n-1\right]2^n\)
Đặt \(c_n=a_n-\left[\dfrac{1}{2}n-1\right]2^n\Rightarrow\left\{{}\begin{matrix}c_1=a_1-\left[\dfrac{1}{2}-1\right]2^1=2\\c_{n+1}=c_n=...=c_1=2\end{matrix}\right.\)
\(\Rightarrow a_n=\left[\dfrac{1}{2}n-1\right]2^n+2=\left(n-2\right)2^{n-1}+2\)
b.
Câu b này đề sai
Với \(n=1\Rightarrow\sqrt{a_1-1}=0< \dfrac{1\left(1+1\right)}{2}\)
Với \(n=2\Rightarrow\sqrt{a_1-1}+\sqrt{a_2-1}=0+1< \dfrac{2\left(2+1\right)}{2}\)
Có lẽ đề đúng phải là: \(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}\ge\dfrac{n\left(n-1\right)}{2}\)
Ta sẽ chứng minh: \(\sqrt{a_n-1}\ge n-1\) ; \(\forall n\in Z^+\)
Hay: \(\sqrt{\left(n-2\right)2^{n-1}+1}\ge n-1\)
\(\Leftrightarrow\left(n-2\right)2^{n-1}+2n\ge n^2\)
- Với \(n=1\Rightarrow-1+2\ge1^2\) (đúng)
- Với \(n=2\Rightarrow0+4\ge2^2\) (đúng)
- Giả sử BĐT đúng với \(n=k\ge2\) hay \(\left(k-2\right)2^{k-1}+2k\ge k^2\)
Ta cần chứng minh: \(\left(k-1\right)2^k+2\left(k+1\right)\ge\left(k+1\right)^2\)
\(\Leftrightarrow\left(k-1\right)2^k+1\ge k^2\)
Thật vậy: \(\left(k-1\right)2^k+1=2\left(k-2\right)2^{k-1}+2^k+1\ge2k^2-4k+2^k+1\)
\(\ge2k^2-4k+5=k^2+\left(k-2\right)^2+1>k^2\) (đpcm)
Do đó:
\(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}>0+1+...+n-1=\dfrac{n\left(n-1\right)}{2}\)
a) Ta có:
\(u_2=2u_1=2.3\\ u_3=2u_2=2.2.3=2^2.3\\ u_4=2u_3=2.2^2.3=2^3.3\)
b) \(u_n=2^{n-1}.3\)
a) Ta có: \({a_{n + 1}} = 3\left( {n + 1} \right) + 1 = 3n + 3 + 1 = 3n + 4\)
Xét hiệu: \({a_{n + 1}} - {a_n} = \left( {3n + 4} \right) - \left( {3n + 1} \right) = 3n + 4 - 3n - 1 = 3 > 0,\forall n \in {\mathbb{N}^*}\)
Vậy \({a_{n + 1}} > {a_n}\).
a) Ta có: \({b_{n + 1}} = - 5\left( {n + 1} \right) = - 5n - 5\)
Xét hiệu: \({b_{n + 1}} - {b_n} = \left( { - 5n - 5} \right) - \left( { - 5n} \right) = - 5n - 5 + 5n = - 5 < 0,\forall n \in {\mathbb{N}^*}\)
Vậy \({b_{n + 1}} < {b_n}\).
\(\Leftrightarrow n\left(a_{n+2}-a_{n+1}\right)=\left(n+1\right)\left(a_{n+1}-a_n\right)+3n\left(n+1\right)\)
\(\Leftrightarrow\dfrac{a_{n+2}-a_{n+1}}{n+1}=\dfrac{a_{n+1}-a_n}{n}+3\)
Đặt \(\dfrac{a_{n+1}-a_n}{n}=b_n\Rightarrow\left\{{}\begin{matrix}b_1=\dfrac{a_2-a_1}{1}=-6\\b_{n+1}=b_n+3\end{matrix}\right.\)
\(\Rightarrow b_n\) là cấp số cộng với công sai 3
\(\Rightarrow b_n=b_1+\left(n-1\right)d=-6+3\left(n-1\right)=3n-9\)
\(\Rightarrow a_{n+1}-a_n=n\left(3n-9\right)=3n^2-9n\)
\(\Rightarrow a_{n+1}-\left(n+1\right)^3+6\left(n+1\right)^2-5\left(n+1\right)=a_n-n^3+6n^2-5n\)
Đặt \(a_n-n^3+6n^2-5n=c_n\Rightarrow\left\{{}\begin{matrix}c_1=6-1+6-5=6\\c_{n+1}=c_n=...=c_1=6\end{matrix}\right.\)
\(\Rightarrow a_n=n^3-6n^2+5n+6\)
Ta có:
\({a_1} = 0;{a_2} = 1;{a_3} = 2;{a_4} = 3;{a_5} = 4\).
\({b_1} = 2.1 = 2;{b_2} = 2.2 = 4;{b_3} = 2.3 = 6;{b_4} = 2.4 = 8\).
\({c_1} = 1;{c_2} = {c_1} + 1 = 1 + 1 = 2;{c_3} = {c_2} + 1 = 2 + 1 = 3;{c_4} = {c_3} + 1 = 3 + 1 = 4\).
+ Chu vi đường tròn có bán kính \(n\) là \({d_n} = 2\pi n\).
Ta có: \({d_1} = 2\pi .1 = 2\pi ;{d_2} = 2\pi .2 = 4\pi ;{d_3} = 2\pi .3 = 6\pi ;{d_4} = 2\pi .4 = 8\pi \).