K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Lời giải:

1.

\(M(x)=A(x)-2B(x)+C(x)\)

\(2x^5 – 4x^3 + x^2 – 2x + 2-2(x^5 – 2x^4 + x^2 – 5x + 3)+ (x^4 + 4x^3 + 3x^2 – 8x + \frac{43}{16})\)

\(=5x^4+2x^2-\frac{21}{16}\)

2.

Khi $x=-\sqrt{0,25}=-0,5$ thì:

\(M(x)=5.(-0,5)^4+2(-0,5)^2-\frac{21}{16}=\frac{-1}{2}\)

3)

$M(x)=0$

$\Leftrightarrow 5x^4+2x^2-\frac{21}{16}=0$

$\Leftrightarrow 80x^4+32x^2-21=0$

$\Leftrightarrow 4x^2(20x^2-7)+3(20x^2-7)=0$

$\Leftrightarrow (4x^2+3)(20x^2-7)=0$

Vì $4x^2+3>0$ với mọi $x$ thực nên $20x^2-7=0$

$\Rightarrow x=\pm \sqrt{\frac{7}{20}}$

Đây chính là giá trị của $x$ để $M(x)=0$

4 tháng 8 2018

a, \(x^2+y^2=8\Rightarrow\left(x+y\right)^2-2xy=8\Rightarrow xy=\frac{8-\left(x+y\right)^2}{-2}=\frac{8-4}{-2}=-2\)

=>\(M=x^3+x^4+y^3+y^4=\left(x+y\right)^3-3xy\left(x+y\right)+\left(x^2+y^2\right)^2-2x^2y^2\)

\(=2^3-3.\left(-2\right).2+8^2-2.\left(-2\right)^2=76\)

b, \(M=x^2+y^2+2xy-4x-4y+3=\left(x+y\right)^2-4\left(x+y\right)+4-1=\left(x+y-2\right)^2-1=\left(5-2\right)^2-1=8\)

7 tháng 2 2022

\(P+Q=5x^2+6xy-y^2+2y^2-2x^2-6xy=3x^2+y^2\ge0\forall x,y\)

Vậy P,Q không thể cùng có giá trị âm

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

a)

Ta có:

\(2xy=(x+y)^2-(x^2+y^2)=2^2-8=-4\Rightarrow xy=-2\)

Vậy:

\(M=x^3+x^4+y^3+y^4=(x^3+y^3)+(x^4+y^4)\)

\(=(x+y)(x^2+y^2)-xy(x+y)+(x^2+y^2)^2-2x^2y^2\)

\(=2.8-(-2).2+8^2-2(-2)^2\)

\(=76\)

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

b)

\(M=x^2+y^2+2xy-4x-4y+3\)

\(=(x^2+xy)+(y^2+xy)-4(x+y)+3\)

\(=x(x+y)+y(x+y)-4(x+y)+3\)

\(=(x+y)(x+y)-4(x+y)+3\)

\(=5.5-4.5+3=8\)

7 tháng 8 2016

Câu 1:

a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)

\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)

 

\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)

c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)

\(P\left(0\right)=0\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)

\(Q\left(0\right)=-\frac{1}{4}\)

Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)

 

 

11 tháng 5 2017

PT A = B

<=> 4x3 - 3xy + x + 2 = 3x3 - 3xy + 3x - 3

<=> x3 - 2x + 5 = 0

Phương trình bậc 3 luôn có ít nhất 1 nghiệm mà.