Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) +g(x) + h(x)
=(2x4 - x3 + x - 3 + 5x5) + (-x5 + 5x2 +4x + 2 + 3x5) + (x2 + x + 1 + 2x3 + 3x4)
= 2x4 - x3 + x - 3 + 5x5 +(-x5) + 5x2 +4x + 2 + 3x5 + x2 + x + 1 + 2x3 + 3x4
= 7x5 + 5x4 + x3 +x2 + 6x
f(x) - g(x) - h(x)
=(2x4 - x3 + x - 3 + 5x5) - (-x5 + 5x2 +4x + 2 + 3x5) - (x2 + x + 1 + 2x3 + 3x4)
=2x4 - x3 + x - 3 + 5x5 +x5 - 5x2 -4x - 2 -3x5 - x2 - x - 1 - 2x3 - 3x4
= 3x5 - x4 - 3x3 - 6x2 - 4x - 6
dễ mà chọn mình nha
2014+g(x)-h(x)=f(x)
suy ra :2014-h(x) = f(x) -g(x)
suy ra :2014-h(x)=(3x^4-5x^3-x^2+1007)-(2x^4+3x^3+x-1007)
suy ra :2014-h(x)=5x^4-8x^3-x^2-x+2014
suy ra :h(x)=5x^4-8x^3-x^2-x+2014-2014
suy ra :h(x)=5x^4-8x^3-x^2-x
a: \(f\left(x\right)+g\left(x\right)-h\left(x\right)\)
\(=5x^5-4x^4+3x^3-x^2-3x+4+x^5-2x^4+x^3-x+7\)
\(=6x^5-6x^4+4x^3-x^2-4x+11\)
f(x)-g(x)-h(x)
\(=15x^5-12x^4+9x^3-7x^2+7x+x^5-2x^4+x^3-x+7\)
\(=16x^5-14x^4+10x^3-7x^2+6x+7\)
b: f(x)+2g(x)=0
\(\Leftrightarrow10x^5-8x^4+6x^3-4x^2+2x+2-10x^5+8x^4-6x^3+6x^2-10x+4=0\)
\(\Leftrightarrow2x^2-8x+6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
=>x=1 hoặc x=3
\(f\left(x\right)+h\left(x\right)-g\left(x\right)\)
\(=\left(5x^4+3x^2+x-1\right)+\left(-x^4+3x^3-2x^2-x+2\right)\)
\(-\left(2x^4-x^3+x^2+2x+1\right)\)
\(=\left(5x^4-x^4-2x^4\right)+\left(3x^3+x^3\right)+\left(3x^2-2x^2-x^2\right)\)
\(+\left(x-x-2x\right)+\left(-1+2-1\right)\)
\(=2x^4+4x^3-2x\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
a) f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 8
g(x) = x5 + 7x4 + 2x3 + 3x2 - 5x - 6
f(x) + g(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 8 + x5 + 7x4 + 2x3 + 3x2 - 5x - 6
= ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 3x2 + x2 ) + ( 4x - 5x ) + ( 8 - 6 )
= 4x2 - x + 2
g(x) - f(x) = x5 + 7x4 + 2x3 + 3x2 - 5x - 6 - ( -x5 - 7x4 - 2x3 + x2 + 4x + 8 )
= x5 + 7x4 + 2x3 + 3x2 - 5x - 6 + x5 + 7x4 + 2x3 - x2 - 4x - 8
= ( x5 + x5 ) + ( 7x4 + 7x4 ) + ( 2x3 + 2x3 ) + ( 3x2 - x2 ) + ( -5x - 4x ) + ( -6 - 8 )
= 2x5 + 14x4 + 4x3 + 2x2 -9x - 14
Đặt H(x) = g(x) + f(x)
=> H(x) = 4x2 - x + 2
H(x) = 0 <=> 4x2 - x + 2 = 0
<=> x(4x - 1) = -2
x | -1 | -2 | 1 | 2 |
4x-1 | 2 | 1 | -2 | -1 |
x | 1/4 | 1/2 | -1/4 | 0 |
loại | loại | loại | loại |
=> Không có giá trị x thỏa mãn
Vậy H(x) vô nghiệm
Mình chỉ biết làm thế này thôi
f(x)=x5+3x2−5x3−x7+x3+2x2+x5−4x2−x7⇒f(x)=2x5−4x3+x2
Đa thức có bậc là 5
g(x)=x4+4x3−5x8−x7+x3+x2−2x7+x4−4x2−x8⇒g(x)=−6x8−3x7+2x4+5x3−3x2g(x)=x4+4x3−5x8−x7+x3+x2−2x7+x4−4x2−x8⇒g(x)=−6x8−3x7+2x4+5x3−3x2
Đa thức có bậc là 8.
Thu gọn và sắp xếp các đa thức f (x) và g (x) theo lũy thừa giảm của biến rồi tìm bậc của đa thức đó.
\(P\left(x\right)+Q\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(f\left(x\right)-g\left(x\right)=3x^4+3x^3-5x^2+x-5-x^4-3x^3+3x^2-5x+7\)
\(=2x^4-2x^2-4x+2\)
\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4-2x^2-4x+2\left(1\right)\)
\(P\left(x\right)-Q\left(x\right)=g\left(x\right)+h\left(x\right)\)
\(g\left(x\right)+h\left(x\right)=x^4+3x^3-3x^2+5x-7+5x^4+2x^3+x^2-5\)
\(=6x^4+5x^3-2x^2+5x-12\)
\(\Rightarrow P\left(x\right)-Q\left(x\right)=6x^4+5x^3-2x^2+5x-12\left(2\right)\)
Từ ( 1 );( 2 ) thì tìm dc P(x) và Q(x)