K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

Ta có: A=x^2 +6x-7 =>A= (x^2 -x)+(7x-7)=> A= x(x-1) +7(x-1)=>A=(x+7)(x-1)

Ta có: C= x^4 +x^3 +2x^2 -x+3

=> C= (x^4 +x) +(x^3 +1) +2.(x^2 -x+1)

=>C= x(x^3 +1) + (x^3 +1) +2.(x^2 -x+1)

=>C=x(x+1)(x^2-x+1) +(x+1)(x^2-x+1) +2.(x^2-x+1)

=>C=(x^2-x+1)(x^2 +x+x+1+2)

=>C=(x^2 -x+1)(x^2 +2x+3)

ta có: B= \(x^3\left(x^2-7\right)^2-36x\)

 =>B=\(x\left[x^2.\left(x^2-7\right)^2-6^2\right]\)

=>B=\(x\left[x\left(x^2-7\right)-6\right].\left[x\left(x^2-7\right)+6\right]\)

=>B=\(x\left(x^3-7x-6\right)\left(x^3-7x+6\right)\)

=>B=\(x\left[\left(x-3\right)\left(x+1\right)\left(x+2\right)\right].\left[\left(x+3\right)\left(x-2\right)\left(x-1\right)\right]\)

19 tháng 8 2017

2) Ta có: M=n^3 (n^2 -7)^2 -36n

=>M=(n-3)(n-2)(n-1)n(n+1)(n+2)(n+3)

Như vậy M là tích của 7 số liên tiếp

=> trong đó có 1 số chia hết cho 2 ; 1 số chia hết cho 3 ; 1 số chia hết cho5 ; 1 số chia hết cho7

Mà 2;3;5;7 nguyên tố cùng nhau nên M \(⋮\)(2.3.5.7) hay M\(⋮\) 210

Vậy với mọi n thuộc N thì M chia hết cho 210

1 tháng 6 2018

b) Phân tích ra thừa số : 5040 = 24 . 32 . 5 . 7

Phân tích : A = n . [ n2 . ( n2 - 7 )2 - 36 ] = n . [ ( n3 - 7n )2 - 62 ]

= n . ( n3 - 7n - 6 ) . ( n3 - 7n + 6 )

Ta lại có : n3 - 7n - 6 = ( n + 1 ) ( n + 2 ) ( n - 3 )

 n3 - 7n + 6 = ( n - 1 ) ( n - 2 ) ( n + 3 )

Do đó : A = ( n - 3 ) ( n - 2 ) ( n - 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )

Ta thấy A là tích của 7 số nguyên liên tiếp nên :

- tồn tại 1 bội số của 5 ( nên A chia hết cho 5 )

- tồn tại 1 bội số của 7 ( nên A chia hết cho 7 )

- tồn tại 2 bội số của 3 ( nên A chia hết cho 9 )

- tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 ( nên A chia hết cho 16 )

A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040

31 tháng 12 2017

1) Ta có: 
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz 
= [(x+y)³ + z³] - 3xy(x+y+z) 
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z) 
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy] 
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy) 
= (x+y+z)(x² + y² + z² - xy - xz - yz). 

31 tháng 12 2017

Câu 2:

\(\frac{x^2-y^2+6x+9}{x+y+3}\)

\(=\frac{x^2-y^2+x^2+6x+9-x^2}{x+y+3}\)

\(=\frac{ \left(x+3\right)^2-y^2}{x+y+3}\)

\(=\frac{\left(x-y+3\right)\left(x+y+3\right)}{x+y+3}\)

\(=x-y+3\)

16 tháng 2 2019

1) \(x^3+6x^2+11x+6\)

\(=x^3+x^2+5x^2+5x+6x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

17 tháng 2 2019

2) \(A=n^3\left(n^2-7\right)^2-36n\)

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]\)

\(A=n\left\{\left[n\left(n^2-7\right)\right]^2-6^2\right\}\)

\(A=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(A=n\left(n^3-7n-6\right)\left(n^3-n-6n+6\right)\)

\(A=n\left(n^3-7n-6\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n-1\right)\right]\)

\(A=n\left(n^3-7n-6\right)\left(n-1\right)\left(n^2+n-6\right)\)

\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left(n^2+3n-2n-6\right)\)

\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-7n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-n-6n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n+1\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+3n-2n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n+3\right)\left(n-2\right)\)

\(A=\left(n-1\right)n\left(n+1\right)\left(n-2\right)^2\left(n+3\right)^2\)

Rồi sao nữa còn nghĩ :))

12 tháng 12 2018

x^4 -x ^3 + 6x^2 - x + n x^2-x+5 x^2+1 - x^4-x^3+5x^2 x^2-x+n - x^2-x+n 0

ĐỂ x4 - x3 + 6x2 -x \(⋮x^2-x+5\)

\(\Rightarrow x-5=0\Rightarrow x=5\)

12 tháng 12 2018

b , ta có : \(3x^3+10x^2-5⋮3x+1\)

\(\Rightarrow3x^3+x^2+9x^2+3x-3x-1-4⋮3x+1\)

\(\Rightarrow x\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-4⋮3x+1\)

mà : \(\left(3x+1\right)\left(4x-1\right)⋮3x+1\)

\(\Rightarrow4⋮3x+1\Rightarrow3x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Nếu : 3x + 1 = 1 => x = 0 ( TM ) 

    3x + 1 = -1 => x = -2/3 ( loại ) 

    3x + 1 = 2 => x = 1/3 ( loại ) 

  3x + 1 = -2 => x = -1 ( TM ) 

 3x + 1 = 4 => x = 1 ( TM ) 

3x + 1 = -1 => x = -5/3 ( loại ) 

\(\Rightarrow x\in\left\{0;\pm1\right\}\)

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn