\(xyz-xy^2-zx^2\)                                B =  
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2018

Câu hỏi của Nguyễn Thanh Huyền - Toán lớp 7 - Học toán với OnlineMath

12 tháng 6 2017

Từ x - y - z = 0 => x = y + z 

Xét tổng 

A + B = (xyz - xy2 - xz2) + (y3 + z3)

= xyz - xy2 - xz2 + y3 + z3

= (y + z)yz - (y + z)y2 - (y + z)z2 + y3 + z3

= y2z + yz2 - y3 - zy2 - yz2 - z3 + y3 + z3

= 0

Vậy A và B là hai đa thức đối nhau

12 tháng 6 2017

vi x-y-z=0 => x = y+z 

thay x = y+z vào A là ra

27 tháng 2 2018

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwweeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrttttttttttttttttttttttttttttttttttttttttttttttttyyyyyyyyyyyyyyyyyyyyyu

22 tháng 5 2018

vì x - y - z = 0 nên x = y + z

Xét tổng A + B = xyz - xy2 - xz2 + y3 + z3

= ( y + z ) . yz - ( y + z ) . y2 - ( y + z ) . z2 + y3 + z3

= y2z + yz2 - y3 - y2z - yz2 - z3 + y3 + z3 = 0

Vậy ...

20 tháng 10 2018

\(A=xyz-xy^2-xz^2=-x\left(y^2-yz+z^2\right)\)

\(B=y^3+z^3=\left(y+z\right)\left(y^2-yz+z^2\right)\)

Lại có \(x-y-z=0\)\(\Leftrightarrow\)\(y+z=x\)

\(\Rightarrow\)\(B=\left(y+z\right)\left(y^2-yz+z^2\right)=x\left(y^2-yz+z^2\right)\) là số đối của \(A\) ( đpcm ) 

Chúc bạn học tốt ~ 

20 tháng 10 2018

Vì x-y-z=0 nên x=y+z

Xét tổng A+B=xyz-xy2-xz2+y3+z3

= (y+z).yz-(y+z).y2-(y+z).z2+y3+z3

=y2.z+y.z2-y3-y2.z-yz2-z3+y3+z3

=(yz2-yz2)+(y3-y3)+(y2z-y2z)+(z3-z3)

=0+0+0+0=0

Vay A và B la hai da thuc doi nhau

5 tháng 6 2018

Ta có :

x-y-z=0 => y+z=x (*(

Thay (*) và đa thức M ta có :

M=\(xyz-xy^2-xz^2=\left(y+z\right)yz-\left(y+z\right)y^2-\left(y+z\right)z^2\)

=\(y^2z+yz^2-y^3-zy^2-z^2y-z^3\)

=\(\left(y^2z-y^2z\right)-\left(z^2y-z^2y\right)-\left(y^3+z^3\right)\)

=\(-\left(y^3+z^3\right)\)

\(-\left(y^3+z^3\right)\) là số đối của \(\left(y^3+z^3\right)\) nên M và N là 2 đa thức đối nhau.

5 tháng 6 2018

Câu 1 :

\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)

=\(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+.......+\dfrac{1}{2012}\right)\)=\(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{1006}\right)\)

\(=\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2013}\)=P

Vậy S=P