K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 7: Muốn tạo thành 9 . 10 ^ -23 phân tử NH3 cần bao nhiêu phân tử H2,cần bao nhiêu phân tử N2 ,cần bao nhiêu mol N,bao nhiêu mol H2.Tạo ra bao nhiêu lít NH3 biết các khí và phản ứng xảy ra như sau:  N2 +  3H2 <-----> 2NH3Câu 8: Cho kim loại Al tác dụng với CuSO4 thu được Al2 (SO4)3 và Cua) Viết phản ứng xảy rab) Cho 12,15g Al vào dung dịch có chứa 54g CuSO4,Chất nào còn dư sau phản ứng và khối lượngc) Lọc...
Đọc tiếp

Câu 7: Muốn tạo thành 9 . 10 ^ -23 phân tử NH3 cần bao nhiêu phân tử H2,cần bao nhiêu phân tử N2 ,cần bao nhiêu mol N,bao nhiêu mol H2.Tạo ra bao nhiêu lít NH3 biết các khí và phản ứng xảy ra như sau:

 N2 +  3H2 <-----> 2NH3

Câu 8: Cho kim loại Al tác dụng với CuSO4 thu được Al2 (SO4)3 và Cu

a) Viết phản ứng xảy ra

b) Cho 12,15g Al vào dung dịch có chứa 54g CuSO4,Chất nào còn dư sau phản ứng và khối lượng

c) Lọc bỏ các chất rắn rồi đem cô cạn dung dịch thu được bao nhiêu gam muối khan

Bài 9: Dùng khí CO để khử Fe3O4 và hiđro khử Fe2O3,khối lượng sắt thu được là 226g.Khi sinh ra từ các phản ứng trên CO2 được dẫn vào nước vôi trong dư,xuất hiện 200g kết tủa trắng

a) Tính thể tích H2 và CO (đktc) đã tham gia phản ứng

b)Tính khối lượng mỗi oxit đã phản ứng

2
8 tháng 1 2016

đề đâu???bucminhlolang

9 tháng 1 2016

Ba câu đấy bạn

26 tháng 1 2015

Câu trả lời của bạn Vũ Thị Ngọc Chinh câu a và câu b tớ thấy đúng rồi, ccâu c ý tính năng lượng của photon ứng với vạch giới hạn của dãy paschen tớ tính thế này: 

Khi chuyển từ mức năng lượng cao \(E_{n'}\)về mức năng lượng thấp hơn  \(E_n\)năng lượng của e giảm đi một lượng đứng bằng năng lượng cảu một photon nên trong trương hợp này đối vs nguyên tử H thì nang lượng photon ứng với vạch giới hạn của dãy paschen là:

                                         \(\Delta E=E_{n'}-E_n=\left(0-\left(-13,6.\frac{1}{n^2}\right)\right)=13,6.\frac{1}{3^2}=1.51\left(eV\right)\)

Không biết đúng không có gì sai góp ý nhé!!

a. pt S ở trạng thái dừng:

           \(\bigtriangledown\)2\(\Psi\)+\(\frac{8m\pi^2}{h^2}\)(E-U)\(\Psi\)=0

đối với Hidro và các ion giống nó, thế năng tương tác hút giữa e và hạt nhân:

            U=-\(\frac{Z^2_e}{r}\)

\(\rightarrow\)pt Schrodinger của nguyên tử Hidro và các ion giống nó:

            \(\bigtriangledown\)2\(\Psi\)+\(\frac{8m\pi^2}{h^2}\)(E+\(\frac{Z^2_e}{r}\))=0

b.Số sóng : \(\widetilde{\nu}\)=\(\frac{1}{\lambda}\)=\(\frac{1}{4861,3.10^{-10}}\)

ta có :  \(\widetilde{\nu}\)=Rh.(\(\frac{1}{n^2}\)-\(\frac{1}{n'^2}\)

  \(\rightarrow\)Hằng số Rydberg:

           Rh=\(\frac{\widetilde{v}}{\frac{1}{n^2}-\frac{1}{n'^2}}\)=\(\frac{1}{\lambda.\left(\frac{1}{n^2}-\frac{1}{n'^2}\right)}\)

  vạch màu lam:n=3 ; n'=4

           Rh=\(\frac{1}{4861,3.10^{-10}.\left(\frac{1}{2^2}-\frac{1}{4^2}\right)}\)=10971.10 m-1=109710 cm-1.

c.Dãy Paschen :vạch phổ đầu tiên n=3 ; vạch phổ giới hạn n'=\(\infty\)

Số sóng : \(\widetilde{\nu}\)= Rh.(\(\frac{1}{n^2}\)-\(\frac{1}{n'^2}\))

              =109710.(\(\frac{1}{3^2}\)-\(\frac{1}{\infty^2}\))=12190 cm-1.

Năng lượng của photon ứng với vạch giới hạn của dãy Paschen:

                  En=-13,6.\(\frac{1}{n^2}\)=-13,6.\(\frac{1}{\infty}\)=0.

12 tháng 4 2016

quá khủng

1. axetilen( ankin), benzen( hidrocacbon mạch vòng), ruou etylic ( ancol), axit axetic( axit cacboxylic), glucozo(cacbohidrat), etyl axetat( este), etilen( anken)

2.

a, qùy tím, nước vôi trong, dd brom

b, quỳ tím, nước vôi trong, và bạc

c,quỳ tím, nước vôi trong, cuso4 khan, kmno4

d,quỳ tím, brom, cuo

e, brom,quỳ tím,na

g, Cu(OH)2, đốt.

***CẦN GẤP Ạ ! ! ! MAI MÌNH NỘP RỒI. HÓA HỌC 9: LUYỆN TẬP VỀ GLUCOZƠBài 1: Hãy viết các PTHH để điều chế PE và Brombenzen từ GlucozơBài 2: Cho biết A, B, C là 3 hợp chất hữu cơ. Trong đó:- Chất A, B, C đều tác dụng với Na, B tác dụng với Na theo tỉ lệ số mol 1:2- Chỉ có chất A làm cho đá vôi sủi bọt.Hỏi A, B, C là chất nào trong 3 chất: C2H6O2, C2H6O, C2H4O2. Viết CTCT mỗi chất và viết...
Đọc tiếp

***CẦN GẤP Ạ ! ! ! MAI MÌNH NỘP RỒI.

 HÓA HỌC 9: LUYỆN TẬP VỀ GLUCOZƠ

Bài 1: Hãy viết các PTHH để điều chế PE và Brombenzen từ Glucozơ

Bài 2: Cho biết A, B, C là 3 hợp chất hữu cơ. Trong đó:

- Chất A, B, C đều tác dụng với Na, B tác dụng với Na theo tỉ lệ số mol 1:2

- Chỉ có chất A làm cho đá vôi sủi bọt.

Hỏi A, B, C là chất nào trong 3 chất: C2H6O2, C2H6O, C2H4O2. Viết CTCT mỗi chất và viết các PTHH xảy ra.

Bài 3: a. Cho một lượng dung dịch Glucozo 2M lên men rượu thì thu được 6,9 gam rượu Etylic. Tính thể tích dung dịch Glucozo đã dùng. Biết H= 75%

b. Đem 225gam dung dịch Glucozo 20% thực hiện phản ứng tráng gương, sau 1 thời gian thu được 21,6gam kết tủa trắng bạc. Tính hiệu suất phản ứng tráng gương, thu được mấy gam Axit Gluconic?

Bài 4: Đem V ml dung dịch Glucozo 2,5M lên men rượu thì điều chế được 13,8gam rượu Etylic với hiệu suất 75%.

a. Tính giá trị V? Nồng độ phần trăm chất dung dịch sau phản ứng? ( cho khối lượng men rượu không đáng kể), khối lượng riêng dung dịch Glucozo là 1,2g/ml.

b. Chưng cất hỗn hợp sau phản ứng thu được rượu mấy độ?

Bài 5: Hỗn hợp A gồm Axit Axetic và một đồng đẳng của nó. Đem 12,7 gam hỗn hợp A cho tác dụng hết với CaCO3 thì thu được 2,24 lít khí ( ĐKTC) và hỗn hợp muối B

a. Tính khối lượng muối B.

b. Tìm CTCT của Axit đồng đẳng biết rằng trong số mol Axit Axetic chiếm 75% hỗn hợp A.

GIẢI CHI TIẾT DÙNG MÌNH RỒI MÌNH ĐÚNG CHO NHA, THANKS NHIỀU ! ! !

BÀI NÀO LÀM ĐƯỢC THÌ GIÚP MÌNH VỚI ! ! !

2

phương trình dạng toán tử :  \(\widehat{H}\)\(\Psi\) = E\(\Psi\)

Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)

thay vào từng bài cụ thể ta có :

a.sin(x+y+z)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)

                =\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)

                =\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)

                = -3.sin(x+y+z)

\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.

b.cos(xy+yz+zx)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)

                =\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)

                =\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)

                =- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))

                =-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)

\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.

c.exp(x2+y2+z2)

\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))exp(x2+y2+z2)
                =\(\frac{\partial^2}{\partial x^2}\)exp(x2+y2+z2)+\(\frac{\partial^2}{\partial y^2}\)exp(x2+y2+z2) +\(\frac{\partial^2}{\partial z^2}\)exp(x2+y2+z2)
                =\(\frac{\partial}{\partial x}\)2x.exp(x2+y2+z2)+\(\frac{\partial}{\partial y}\)2y.exp(x2+y2+z2)+\(\frac{\partial}{\partial z}\)2z.exp(x2+y2+z2)
                =2.exp(x2+y2+z2) +4x2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4y2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4z2.exp(x2+y2+z2)
                =(6+4x2+4y2+4z2).exp(x2+y2+z2)
\(\Rightarrow\)exp(x2+y2+z2không là hàm riêng của hàm laplace.
d.ln(xyz)
\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))ln(xyz)
                =\(\frac{\partial^2}{\partial x^2}\)ln(xyz)+\(\frac{\partial^2}{\partial y^2}\)ln(xyz)+\(\frac{\partial^2}{\partial z^2}\)ln(x+y+z)
                =\(\frac{\partial}{\partial x}\)yz.\(\frac{1}{xyz}\)\(\frac{\partial}{\partial y}\)xz.\(\frac{1}{xyz}\) + \(\frac{\partial}{\partial z}\)xy.\(\frac{1}{xyz}\)
                =\(\frac{\partial}{\partial x}\)\(\frac{1}{x}\) + \(\frac{\partial}{\partial y}\)\(\frac{1}{y}\)+\(\frac{\partial}{\partial z}\)\(\frac{1}{z}\)
                = - \(\frac{1}{x^2}\)\(\frac{1}{y^2}\)\(\frac{1}{z^2}\)
\(\Rightarrow\) ln(xyz) không là hàm riêng của hàm laplace.
 
 
14 tháng 1 2015

đáp án D

25 tháng 11 2018

Các chất có nhóm –CHO trong phân tử thì có phản ứng tráng gương: glucozo. Riêng trường hợp fructozo trong môi trường kiềm thì nó chuyển thành glucozo nên có phản ứng tráng gương.

Đáp án C

2 tháng 2 2015

Ta có:

Hàm \(\Psi\)được gọi là hàm chuẩn hóa nếu: \(\int\Psi.\Psi^{\circledast}d\tau=1hay\int\Psi^2d\tau=1\)

Hàm \(\Psi\)chưa chuẩn hóa là: \(\int\left|\Psi\right|^2d\tau=N\left(N\ne1\right)\)

Để có hàm chuẩn hóa, chia cả 2 vế cho N,ta có:

\(\frac{1}{N}.\int\left|\Psi\right|^2d\tau=1\Rightarrow\frac{1}{N}.\int\Psi.\Psi^{\circledast}d\tau=1\)

Trong đó: \(\Psi=\frac{1}{\sqrt{N}}.\Psi\)là hàm chuẩn hóa; \(\frac{1}{\sqrt{N}}\)là thừa số chuẩn hóa

Ta có:

\(\frac{1}{N}.\int\Psi.\Psi^{\circledast}d\tau=\frac{1}{N}.\int\left|\Psi\right|^2d\tau=1\Leftrightarrow\frac{1}{N}.\iiint\left|\Psi\right|^2dxdydz=1\)

Chuyển sang tọa độ cầu, ta có: \(\begin{cases}x=r.\cos\varphi.sin\theta\\y=r.sin\varphi.sin\theta\\z=r.\cos\theta\end{cases}\)với \(\begin{cases}0\le r\le\infty\\0\le\varphi\le2\pi\\0\le\theta\le\pi\end{cases}\)

\(\Rightarrow\frac{1}{N}.\iiint\left(r.\cos\varphi.sin\theta\right)^2.e^{-\frac{r}{a_o}}.r^2.sin\theta drd\varphi d\theta=1\)

\(\Leftrightarrow\frac{1}{N}.\int\limits^{\infty}_0r^4.e^{-\frac{r}{a_o}}dr.\int\limits^{2\pi}_0\cos^2\varphi d\varphi.\int\limits^{\pi}_0sin^3\theta d\theta=1\)

\(\Leftrightarrow\frac{1}{N}.\frac{4!}{\left(\frac{1}{a_o}\right)^5}.\int\limits^{2\pi}_0\frac{\cos\left(2\varphi\right)+1}{2}d\varphi\int\limits^{\pi}_0\frac{3.sin\theta-sin3\theta}{4}d\theta=1\)(do \(\int\limits^{\infty}_0x^n.e^{-a.x}dx=\frac{n!}{a^{n+1}}\))

\(\Leftrightarrow\frac{1}{N}.24.a^5_o.\frac{4}{3}.\pi=1\)

\(\Leftrightarrow\frac{1}{N}=\frac{1}{32.a^5_o.\pi}\)

\(\Rightarrow\)Thừa số chuẩn hóa là: \(\frac{1}{\sqrt{N}}=\sqrt{\frac{1}{32.a^5_o.\pi}}\); Hàm chuẩn hóa: \(\Psi=\frac{1}{\sqrt{N}}.\Psi=\sqrt{\frac{1}{32.a^5_o.\pi}}.x.e^{-\frac{r}{2a_o}}\)

1 tháng 2 2015

áp dụng dk chuẩn hóa hàm sóng. \(\int\psi\psi^{\cdot}d\tau=1.\)

ta có: \(\int N.x.e^{-\frac{r}{2a_0}}.N.x.e^{-\frac{r}{2a_0}}.d\tau=1=N^2.\int_0^{\infty}r^4e^{-\frac{r}{a_0}}dr.\int_0^{\pi}\sin^3\theta d\tau.\int^{2\pi}_0\cos^2\varphi d\varphi=N^2.I_1.I_2.I_3\)

Thấy tích phân I1 có dạng tích phân hàm gamma. \(\int^{+\infty}_0x^ne^{-ax}dx=\int^{+\infty}_0\frac{\left(\left(ax\right)^{n+1-1}e^{-ax}\right)d\left(ax\right)}{a^{n+1}}=\frac{\Gamma\left(n+1\right)!}{a^{n+1}}=\frac{n!}{a^{n+1}}.\)

.áp dụng cho I1 ta được I\(I1=4!.a_0^5=24a^5_0\). tính \(I2=\int_0^{\pi}\sin^3\theta d\theta=\int_0^{\pi}\left(\cos^2-1\right)d\left(\cos\theta\right)=\frac{4}{3}\). tính tp \(I3=\int_0^{2\pi}\cos^2\varphi d\varphi=\int_0^{2\pi}\frac{\left(1-\cos\left(2\varphi\right)\right)}{2}d\varphi=\pi\)

suy ra \(\frac{N^2.24a_0^5.\pi.4}{3}=1\). vậy N=\(N=\frac{1}{\sqrt{32\pi a_0^5}}\). hàm \(\psi\) sau khi chiuẩn hóa có dạng \(\psi=\frac{1}{\sqrt{\pi32.a_0^5}}x.e^{-\frac{r}{2a_0}}\)

20 tháng 1 2015

a) Ta có:   Mật độ xác suất tìm thấy electron trong vùng không gian xung quanh hạt nhân nguyên tử:

    D(r) = R2(r) . r2

             = 416/729 . a0-5 . r2 . (2 - r/3a0)2 . e-2r/3a0 . r2

           = 416/729 . a0-5 . (4r- 4r5/3a+ r6/9a02) .  e-2r/3a0

      Khảo sát hàm số D(r) thuộc r

          Xét:  d D(r)/ dr = 416/729 . a0-5 . [(16r3 - 20r4/3a0 + 2r5/3a02) .  e-2r/3a0  -  (4r- 4r5/3a+ r6/9a02) . 2/3a0  e-2r/3a0 ]

                          = 416/729 . a0-5 . e-2r/3a . r3 . (16a03 - 28r/3a0 + 14r2/9a02 - 2r3/27a03)

                          = 832/19683 . a0-8 e-2r/3a . r3 . (-r+21r2.a- 126r.a02 +216a03)

                          = - 832/19683 . a0-8 e-2r/3a . r3 . (r - 6a0).(r - 3a0).(r - 12a0)

           d D(r)/ dr = 0. Suy ra r =0; r =3a; r = 6a0; r = 12a0

           Với r = 0 : D(r) =0

                  r =3a: D(r) = 416/9 .a-1 . e-2

                  r =6a: D(r) = 0

                  r =12a: D(r) = 425984/9.a-1 . e-8

b) Ai vẽ câu này rồi cho   up lên với, cám ơn mọi người trước nhé!  

21 tháng 1 2015

a)Mật độ xác suất có mặt electron tỷ lệ với |R3P|2.r2

D(r)=|R3P|2.r2  =D (r)=\(\frac{416}{729}\) .a0-5.(2r2- \(\frac{r^3}{3a_0}\)).\(^{e^{-\frac{2r}{3a_0}}}\)

   Lấy đạo hàm của D theo r để khảo sát mật độ xác suất :

    D' (r)= \(\frac{416}{729}\) .a0-5.2.(2r2-\(\frac{r^3}{3a_0}\)).(4r-\(\frac{r^2}{a_0}\)).\(^{e^{-\frac{2r}{3a_0}}}\)+\(\frac{416}{729}\) .a0-5.(2r2-\(\frac{r^3}{3a_0}\))2.(-\(\frac{2}{3a_0}\)).\(^{e^{-\frac{2r}{3a_0}}}\) 

           =\(\frac{832}{729}\). a0-6.\(^{e^{-\frac{2r}{3a_0}}}\). (2r2-\(\frac{r^3}{3a_0}\)) .[(4r-\(\frac{r^2}{a_0}\)).a0 -\(\frac{1}{3}\). (2r2-\(\frac{r^3}{3a_0}\))]

            =\(\frac{832}{729}\). a0-6.\(^{e^{-\frac{2r}{3a_0}}}\).r3.(2- \(\frac{r}{3a_0}\)).(\(\frac{r^2}{9a_0}-\frac{5r}{3}+4a_0\))

=>D’(r)=0   => r=0 ,r=3a0 ,r=6a0 ,r=12a0.

Với:r=0      =>D(r)=0

       r=3a0  =>D(r)=0

       r=6a0  =>D(r)=\(\frac{416}{9a_0.e^2}\)

       r=12a0=>D(r)=\(\frac{425984}{a_0.e^8}\)

b)

Bài 31_ Cấu tạo chất:Cho phân tử CH2 = CH - CH = CH - CH = CH2 chuyển động trong giếng thế một chiều có chiều rộng là a. Tính năng lượng electron pi trong toàn khung phân tử? Cho biết chiều dài giữa 2 nguyên tử cacbon là 1,4 Å, hằng số planck h = 6,625.10-34 J.s và khối lượng electron me = 9,1.10-31 kg.Bài làm:    Với các phân tử chứa liên kết pi, chuyển động trong giếng thế một chiều thì chỉ...
Đọc tiếp

Bài 31_ Cấu tạo chất:Cho phân tử CH2 = CH - CH = CH - CH = CH2 chuyển động trong giếng thế một chiều có chiều rộng là a. Tính năng lượng electron pi trong toàn khung phân tử? Cho biết chiều dài giữa 2 nguyên tử cacbon là 1,4 Å, hằng số planck h = 6,625.10-34 J.s và khối lượng electron me = 9,1.10-31 kg.

Bài làm:    

Với các phân tử chứa liên kết pi, chuyển động trong giếng thế một chiều thì chỉ khảo sát cd của các electron pi và năng lượng của hệ chính là tổng năng lượng của các electron pi. 

Ta có: \(E_{\pi}=2E_1+2E_2+2E_3\)\(=2.\frac{1^2.h^2}{8.m.a^2}+2.\frac{2^2.h^2}{8.m.a^2}+2.\frac{3^2.h^2}{8.m.a^2}\)

Với các giá trị h,m đã cho ở đề bài. 

Giá trị \(a=\left(N+1\right)l_{c-c}\); N: số nguyên tử Cacbon trong mạch. Vậy : \(a=\left(6+1\right)l_{c-c}=7.1,4.10^{-10}\left(m\right)\).

Thay vào ta có: \(E_{\pi}=1,7085.10^{-18}\left(J\right)hay:1,029.10^3KJ.mol^{-1}\)

4
21 tháng 12 2014

Các bạn chú ý, khi tính ra E(\(\pi\)) = 1,7085.10-18 thì đơn vị là J2s2/kg.m2 chứ không phải là đơn vị (J), sau đó nhân với NA và nhân với 10-3 thì mới ra được kết quả là 1,06.103 kJ/mol.

21 tháng 12 2014

bạn có ghi bài trên lớp phần cấu tạo chất đủ không. co mình mượn chép lại mấy bài phần đó với