Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(P=\left(a+1\right)^2+\left(b+1\right)^2+\left(c+1\right)^2+2\left(ab+bc+ca\right)\)
\(P=a^2+2a+1+b^2+2b+1+c^2+2c+1+2ab+2bc+2ca\)
\(P=\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+2a+2b+2c+3\)
\(P=\left(a+b+c\right)^2+2\left(a+b+c\right)+3\)
ta có : \(Q=\left(a+b+c+1\right)^2=\left(\left(a+b+c\right)+1\right)^2\)
\(Q=\left(a+b+c\right)^2+2\left(a+b+c\right)+1\)
\(\Leftrightarrow P-Q=\left(a+b+c\right)^2+2\left(a+b+c\right)+3-\left(a+b+c\right)^2-2\left(a+b+c\right)-1=2\)
vậy \(P-Q=2\)
\(a^2+ac-b^2-bc=\left(a^2-b^2\right)+\left(ac-bc\right)=\left(a+b\right)\left(a-b\right)+c\left(a-b\right)=\)\(\left(a-b\right)\left(a+b+c\right)\)
Tương tự:
\(b^2+ab-c^2-ac=\left(b-c\right)\left(a+b+c\right)\)
\(c^2+bc-a^2-ab=\left(c-a\right)\left(a+b+c\right)\)
\(Q=\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)
\(=\frac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)
1a)
Đặt \(a^2+a+1=t\Rightarrow a^2+a+2=t+1\)
\(\Rightarrow A=t\left(t+1\right)-12=t^2+t-12=t^2-3t+4t-12=\left(t-3\right)\left(t+4\right)\)
\(=\left(a^2+a-2\right)\left(a^2+a+5\right)\)
Mà \(a>1\Rightarrow\hept{\begin{cases}a^2+a-2>0\\a^2+a+5>0\end{cases}}\forall a>1\)
Vậy A là hợp số
1b)
Ta có :
\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\cdot...\cdot\left(2^{1006}+1\right)+1\)
\(=\left(2^2-1\right)\left(2^2+1\right)\cdot...\cdot\left(2^{1006}+1\right)+1=....=\left(2^{1006}-1\right)\left(2^{1006}+1\right)+1\)
\(=2^{2012}-1+1=2^{2012}\)
làm cái đề ra ấy, ngại viết lại đề :P
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)
\(\Rightarrow M=1^{2018}+1^{2019}+1^{2020}=1+1+1=3\)
1)
a) \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2\left(ab^2c+a^2bc+abc^2\right)\)\(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\)(vì a+b+c=0)
b) \(a+b+c=0\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2\left(theoa\right)\)
với ab+bc+ca=1
=>\(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
tương tự mấy cái kia rồi thay vào, ta có
A=\(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=1\)
b),ta có \(a^2+2bc-1=a^2+bc-ab-ac=\left(a-b\right)\left(a-c\right)\)
tương tự mấy cái kia, rồi thay váo, ta có
\(B=\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}=1\)
^_^
Ta có: MS = (1+a2).(1+b2).(1+c2)
= (ab + ac + bc + a2).(ab + ac + bc + b2).(ab + bc + ac + c2)
= [ (a2 + ac) + (ab + bc) ] . [ (ab + b2) + (ac + bc) ] . [ (ab + bc) + (ac + c2) ]
= [ a(a + c) + b(a + c) ] . [ b(a + b) + c(a + b) ] . [ b(a + c) + c(a + c) ]
= (a + b)(a + c)(b + c)(a + b)(b + c)(a + c)
= (a + b)2(b + c)2(a + c)2 = TS
Vậy A = 1
bạn bảo vận dụng quy tắc nhẩm thì bọn mình phải trình bày kiểu gì
bây giờ bọn mình làm là phải viết ra nếu như bạn nói thì trong đầu mình nghĩ cái gì thì mình phải viết ra cho bạn xong rồi để bạn suy nghĩ theo như thế à