Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Theo bđt cauchy :
\(\frac{1}{x^2+x}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}\cdot\frac{x}{2}\cdot\frac{x+1}{4}}=\frac{3}{2}\)
Dấu "=" \(\Leftrightarrow\frac{1}{x\left(x+1\right)}=\frac{x}{2}=\frac{x+1}{4}\Leftrightarrow x=1\)
+ Tương tự :
\(\frac{1}{y^2+y}+\frac{y}{2}+\frac{y+1}{4}\ge\frac{3}{2}\) Dấu "=" <=> y = 1
\(\frac{1}{z^2+z}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}\) Dấu "=" <=> z = 1
Do đó : \(P+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge\frac{9}{2}\)
\(\Rightarrow P+\frac{3}{2}+\frac{3}{2}\ge\frac{9}{2}\) \(\Rightarrow P\ge\frac{3}{2}\)
Dấu "=" <=> x = y = z = 1
cho x,y là các số thực ko âm tm: x+y+z=2.Tìm giá trị nhỏ nhất của biểu thứcx^4+Y^4+Z^4 .
B tự c/m BĐT \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)nhé.
Dấu " = " xảy ra \(\Leftrightarrow x=y=z\)
Áp dụng :
\(x^4+y^4+z^4\ge\frac{1}{3}.\left(x^2+y^2+z^2\right)^2\ge\frac{1}{3}.\left[\frac{1}{3}.\left(x+y+z\right)^2\right]^2=\frac{1}{27}.\left(x+y+z\right)^4=\frac{1}{27}.2^4=\frac{16}{27}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)
KL:...
\(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
Suy ra : \(A^2\le2\Rightarrow A\le\sqrt{2}\)
Vậy Max A = \(\sqrt{2}\) khi \(\hept{\begin{cases}x=y\\x=z\\x+y+z=\sqrt{2}\end{cases}\Leftrightarrow}x=y=z=\frac{\sqrt{2}}{3}\)
\(Gt\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow ab+bc+ca=1\)
\(VT=\frac{2}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)
\(=\frac{\frac{2}{x}}{\sqrt{\frac{1}{x^2}+1}}+\frac{\frac{1}{y}}{\sqrt{\frac{1}{y^2}+1}}+\frac{\frac{1}{z}}{\sqrt{\frac{1}{z^2}+1}}\)
\(=\frac{2a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)
\(=\sqrt{\frac{2a}{\left(a+b\right)}\cdot\frac{2a}{\left(a+c\right)}}+\sqrt{\frac{2b}{\left(b+a\right)}\cdot\frac{b}{2\left(b+c\right)}}\)\(+\sqrt{\frac{2c}{\left(c+a\right)}\cdot\frac{c}{2\left(c+b\right)}}\)
\(\le\frac{\frac{2a}{a+b}+\frac{2a}{a+c}+\frac{2b}{a+b}+\frac{b}{2\left(b+c\right)}+\frac{2c}{c+a}+\frac{c}{2\left(c+b\right)}}{2}=\frac{9}{4}\)