K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 7 2023

Lời giải:
$\frac{6n-1}{3n-2}=\frac{2(3n-2)+3}{3n-2}$

$=2+\frac{3}{3n-2}$

Để phân số trên có giá trị nhỏ nhất thì $\frac{3}{3n-2}$ nhỏ nhất

$\Rightarrow 3n-2$ là số âm lớn nhất.

Với $n$ nguyên thì $3n-2$ âm lớn nhất bằng -2$ khi $n=0$

21 tháng 7 2015

\(A = {6n-1\over 3n+2} \),A là số nguyên nên 6n-1 phải chia hết cho 3n+2. Suy ra 3n+2 là ước của 6n-1 =  \({\pm 1 , \pm (6n-1)}\)

.với 3n+2 =1 => n=\(x = {-1\ \ \over 3}\) (loại)

.Với 3n+2= -1=> n= -1 => A= 7 ( thỏa mãn )

.với 3n +2 =6n-1 => n = 1 => A = 1 (Thỏa mãn )

.với 3n+2 =1-6n => n=\(x = {-1 \ \over 9}\) (loại )

Kết luận vậy n = { -1,1 }

19 tháng 3 2016

bài lớp 6 học sinh giỏi đấy

31 tháng 7 2023

\(A=\dfrac{6n-1}{3n-2}\)

\(\Rightarrow A=\dfrac{6n-4+3}{3n-2}\)

\(\Rightarrow A=\dfrac{2\left(3n-2\right)+3}{3n-2}\)

\(\Rightarrow A=2+\dfrac{3}{3n-2}\ge2+\dfrac{3}{3.1-2}=5\left(n=1\in Z\right)\)

\(\Rightarrow Min\left(A\right)=5\left(n=1\right)\)

30 tháng 7 2023

mkmhkkkkkkkkkkkkkk

a)Để A có giá trị nguyên thì 3n+4 chia hết cho n-1

=>3(n-1)+7 chia hết cho n-1

=> n-1 thuộc Ư(7)={1;7;-1;-7}

Phần cuối bn tự làm nha

Còn câu b làm tương tự

8 tháng 3 2020

a) Từ đề bài, ta có:

\(A=\frac{3n+4}{n-1}=\frac{3\left(n-1\right)+7}{n-1}=3+\frac{7}{n-1}\)

\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)\)

\(\Rightarrow\left(n-1\right)\in\left\{\pm1;\pm7\right\}\)

\(\Rightarrow n\in\left\{2;0;-6;8\right\}\)

b) \(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)+5}{3n+1}=2+\frac{5}{3n+1}\)

\(\Rightarrow\left(3n+1\right)\inƯ\left(5\right)\)

\(\Rightarrow\left(3n+1\right)\in\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{\frac{-2}{3};0;-2;\frac{4}{3}\right\}\)

2 tháng 5 2021

Ta có M=6n-3/3n+1=(6n+2)-5/3n+1=2(3n+1)-5/3n+1=2- 5/3n+1 

Khi đó M nguyên khi 5/3n+1 nguyên

 <=> 3n+1={1;-1;5;-5}

<=> n={0;-2/3;4/3;-2}

Mà n nguyên

=> n={0;-2}

Khi đó M lần lượt nhận các giá trị tương ứng -3;3 đều là các số nguyên

Vậy n={0;-2}                              

8 tháng 7 2016

a) \(A=\frac{6n+7}{2n+3}=\frac{6n+9}{2n+3}-\frac{2}{2n+3}\) nguyên

<=> 2n + 3 thuộc Ư(2) = {-2; -1; 1; 2}

<=> 2n thuộc {-5; -4; -2; -1}

Vì n nguyên nên n thuộc {-2; -1}

b) A có GTNN <=> \(\frac{2}{2n+3}\) có GTLN

<=> 2n + 3 là số nguyên dương nhỏ nhất 

<=>  2n + 3 = 1 

<=> 2n = -2

<=> n = -1

8 tháng 7 2016

a)\(A=\frac{6n+7}{2n+3}=\frac{2n+2n+2n+3+4}{2n+3}=\frac{4}{2n+3}\)

\(\Rightarrow2n+3\in\text{Ư}\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)

Nếu 2n+3 = 1 => n = -2 (nhận)

Nếu 2n+3 = 2 => n =-0,5 (loại)

Nếu 2n + 3 = 4 => n = 3,5 (loại)

Nếu 2n + 3 = -1 => n = 1 (nhận)

Nếu 2n + 3 = -2 => n = -2,5 (loại)

Nếu 2n + 3 = -4 => n =-3,5 (loại)

Vậy n \(\in\) {-2;1}

b) A GTNN => \(\frac{2}{2n+3}\) có GTLN

=> 2n + 3 là số nguyên dương nhỏ nhất

=> 2n + 3 = 1 

=> 2n = -2

=> n = -1