Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk học dạng này rồi nên bạn yên tâm là đúng nhé
2.
A = 1+3+32 +....+32016
3A= (1+3+32+.....+32016) . 3
3A= 3+32 + 33+.....+ 32017
3A-A = (3+32 + 33+.....+ 32017) - (1+3+32 +....+32016)
2A = 32017 - 1
A= (32017 - 1) : 2
\(C=1+5^2+5^4+5^6+...+5^{2016}\)
\(\Rightarrow5^2C=5^2+5^4+5^6+...+5^{2018}\)
\(\Rightarrow25C-C=\left(5^2+5^4+5^6+...+5^{2018}\right)-\left(1+5^2+5^4+...+5^{2016}\right)\)
\(\Rightarrow24C=5^{2018}-1\)
\(\Rightarrow C=\frac{5^{2018}-1}{24}\)
\(a,A=\left\{1;2;3;4;6;9;12;18;36\right\}\\ B=\left\{0;3;6;9\right\}\\ B\subset A\\ b,E=\left\{1;2;4;12;18;36\right\}\\ c,C=\left\{0;3\right\}\)
Để đây là số tự nhiên thì \(\left\{{}\begin{matrix}x+3-5⋮x+3\\\dfrac{x-2}{x+3}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3\in\left\{1;-1;5;-5\right\}\\\left[{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x\in\left\{-4;-8\right\}\)
Ta có
\(\left(x-1\right)\left(x+1\right)=x^2-1\)
\(\Leftrightarrow x^2-1\le0\)
\(\Leftrightarrow x^2\le1\)
Mà x^2 lớn hơn hoặc bằng 0 với mọi x
\(\Rightarrow\left[\begin{array}{nghiempt}x^2=0\\x^2=1\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\\left[\begin{array}{nghiempt}x=1\\x=-1\end{array}\right.\end{array}\right.\)
Vậy x=0 ; x=1 ; x= - 1
Để : \(\left(x+1\right).\left(x-1\right)\le0\)
Thì một trong hai số phải < 0
Từ đây , sẽ xảy ra 2 trường hợp :
\(\left(1\right)\begin{cases}x+1< 0\\x-1>0\end{cases}\Rightarrow\begin{cases}x< -1\\x>1\end{cases}\Rightarrow-1< x< 1\)
\(\left(2\right)\begin{cases}x+1>0\\x-1< 0\end{cases}\Rightarrow\begin{cases}x>-1\\x< 1\end{cases}\Rightarrow x\in O\)
Để : \(\left(x+1\right).\left(x-1\right)=0\) thì :
\(\begin{cases}x+1=0\\x-1=0\end{cases}\Rightarrow\begin{cases}x=-1\\x=1\end{cases}\)
Bài này mình đã làm tại linh : Câu hỏi của Nguyễn Ngọc Phượng - Toán lớp 6 | Học trực tuyến
Ta có : \(D=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
\(\Rightarrow\)Để D đạt giá trị nhỏ nhất thì \(\frac{3}{n-2}\)đạt giá trị nhỏ nhất
Ta có : \(3>0\) và \(\frac{3}{n-2}\)đạt giá trị nhỏ nhất \(\Rightarrow n-2\)nhỏ nhất
\(\Rightarrow n-2\)là số nguyên dương nhỏ nhất
\(\Rightarrow n-2=1\Rightarrow n=3\in Z\)
Vậy \(n=3\) thì D có giá trị nhỏ nhất
\(D=\frac{n+1}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
D lớn nhất <=> \(\frac{3}{n-2}\) lớn nhất
<=> n - 2 là số nguyên dương nhỏ nhất (vì nếu là 0 thì phân số k có nghĩa, còn nếu là số âm thì \(\frac{3}{n-2}\) cũng âm nên k thể lớn nhất được)
<=> n - 2 = 1 <=> n = 3
D đạt GTLN là \(\frac{3+1}{3-2}=\frac{4}{2}=2\) tại n = 3
Giải:
a) \(A=1+4+4^2+4^3+4^4+4^5+4^6\)
\(\Leftrightarrow4A=4\left(1+4+4^2+4^3+4^4+4^5+4^6\right)\)
\(\Leftrightarrow4A=4+4^2+4^3+4^4+4^5+4^6+4^7\)
b) Lấy 4A - A, ta được:
\(4A-A=4^7-1\)
\(\Leftrightarrow3A=4^7-1\)
\(\Leftrightarrow A=\dfrac{4^7-1}{3}\)
Vậy ...