K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

Đăng ít thôi.

6 tháng 8 2017

==" nghĩ mấy cía này của lớp 78 chứ sao lại 6

28 tháng 7 2016

bấm máy tính ra kết quả sau so sánh với 1/2 là ok

20 tháng 12 2014

2A=2+2^2+....+2^2014+2^2015

A=1+2^2+....+2^2014

A=2^2015-1 <2^2015

12 tháng 4 2018

Nguyễn Ngô Gia Hân:

1.Tìm x

\(^{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{29}{30}}\)

\(^{\Leftrightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}+\frac{1}{\left(x+1\right)}=\frac{29}{30}}\)

\(^{\Leftrightarrow\frac{1}{1}+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{x}-\frac{1}{x}\right)-\frac{1}{x+1}=\frac{29}{30}}\)

\(^{\Leftrightarrow\frac{1}{1}+0+0+0+...+0-\frac{1}{x+1}=\frac{29}{30}}\)

\(^{\Leftrightarrow\frac{1}{1}-\frac{1}{x+1}=\frac{29}{30}}\)

\(^{\Leftrightarrow\frac{1}{x+1}=\frac{1}{1}-\frac{29}{30}}\)

\(^{\Leftrightarrow\frac{1}{x+1}=\frac{1}{30}}\)

\(^{\Leftrightarrow x+1=30}\)

\(^{\Leftrightarrow x=29}\)

Vậy x =29

Làm đc mỗi bài này thoi, tham khảo nha ~~

13 tháng 4 2018

Bài 1 có rồi mk làm mấy bài sau nhé 

Bài 2 : 

Ta có : 

\(3a=4b\)\(\Rightarrow\)\(\frac{b}{3}=\frac{a}{4}\) và \(b-a=-10\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{b}{3}=\frac{a}{4}=\frac{b-a}{3-4}=\frac{-10}{-1}=10\)

Do đó : 

\(\frac{a}{4}=10\)\(\Rightarrow\)\(a=10.4=40\)

\(\frac{b}{3}=10\)\(\Rightarrow\)\(b=10.3=30\)

Vậy \(a=40\) và \(b=30\)

Chúc bạn học tốt ~ 

17 tháng 7 2016

3S=3+32+33+34+35+...+32016

2S+1=3S-S+1=(3+32+33+....+32016)-(1+31+32+...+32015)+1

        =32016=(31008)là số chính phương

26 tháng 7 2018

ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};\frac{1}{5^2}< \frac{1}{4.5};...;\frac{1}{2017^2}< \frac{1}{2016.2017}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2017^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\)

                                                                            \(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2016}-\frac{1}{2017}\)

                                                                              \(=\frac{1}{2}-\frac{1}{2017}< \frac{1}{2}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2017^2}< \frac{1}{2}\left(đpcm\right)\)