Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
Phương trình (C) là đường tròn khi và chỉ khi \(m^2-2m>0\Rightarrow\left[{}\begin{matrix}m>2\\m< 0\end{matrix}\right.\)
Khi đó (C) là đường tròn tâm \(A\left(0;1\right)\) bán kính \(R=\sqrt{m^2-2m}\)
Pt (C'): \(\left(x-1\right)^2+y^2=2m^2-3m\)
(C') là pt đường tròn khi và chỉ khi \(2m^2-3m>0\Rightarrow\left[{}\begin{matrix}m>\frac{3}{2}\\m< 0\end{matrix}\right.\)
Khi đó (C') là đường tròn tâm \(B\left(1;0\right)\) bán kính \(\sqrt{2m^2-3m}\)
Tồn tại một phép tịnh tiến biến (C) thành (C') khi và chỉ khi (C) và (C') có cùng bán kính
\(\Leftrightarrow\sqrt{m^2-2m}=\sqrt{2m^2-3m}\)
\(\Leftrightarrow m^2-2m=2m^2-3m\)
\(\Leftrightarrow m^2-m=0\Rightarrow\left[{}\begin{matrix}m=0\left(l\right)\\m=1\left(l\right)\end{matrix}\right.\)
Vậy không tồn tại m thỏa mãn
1.
Phép tịnh tiến theo \(\overrightarrow{v}=\left(a;b\right)\) biến d thành d' cùng phương với d
\(\Rightarrow\) Phương trình d' có dạng: \(x+y+c=0\)
Đường tròn (C) tâm \(I\left(3;3\right)\) bán kính \(R=\sqrt{2}\)
Do d' tiếp xúc (C) \(\Leftrightarrow d\left(I;d'\right)=R\)
\(\Leftrightarrow\frac{\left|3+3+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Leftrightarrow\left|c+6\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}c=-8\\c=-4\end{matrix}\right.\)
Có 2 đường thẳng d' thỏa mãn: \(\left[{}\begin{matrix}x+y-8=0\\x+y-4=0\end{matrix}\right.\)
Ứng với đó ta có 2 dạng vecto \(\overrightarrow{v}=\left(a;8-a\right)\) hoặc \(\overrightarrow{v}=\left(a;4-a\right)\)
1.
Do \(\overrightarrow{v}\) cùng phương với \(\overrightarrow{u}\) nên \(\overrightarrow{v}=\left(a;a\right)\) với a là số thực khác 0
Chọn \(M\left(0;0\right)\) là 1 điểm thuộc d
Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)
\(\left\{{}\begin{matrix}x_{M'}=a+0=a\\y_{M'}=a+0=a\end{matrix}\right.\) \(\Rightarrow M'\left(a;a\right)\)
Thay vào pt d' ta được:
\(a+a-4=0\Rightarrow a=2\)
\(\Rightarrow\overrightarrow{v}=\left(2;2\right)\)
\(\Rightarrow\left|\overrightarrow{v}\right|=2\sqrt{2}\)
2.
Gọi \(\overrightarrow{u}=\left(a;b\right)\)
Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d
Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow A'\in d'\)
Ta có: \(\left\{{}\begin{matrix}x_{A'}=a\\y_{A'}=b+1\end{matrix}\right.\)
Thay tọa độ A' vào pt d' ta được: \(a+b+1-5=0\Leftrightarrow a+b=4\)
Ta có:
\(\left|\overrightarrow{u}\right|=\sqrt{a^2+b^2}\ge\sqrt{\frac{1}{2}\left(a+b\right)^2}=2\sqrt{2}\)
\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=2\sqrt{2}\) khi \(a=b=2\)
(C) có \(\left\{{}\begin{matrix}I\left(4,0\right)\\R=4\end{matrix}\right.\)
\(T_{\overrightarrow{v}}\left(I\right)=I'(x',y')\Rightarrow\left\{{}\begin{matrix}x'=x+a=4+3=7\\y'=y+a=0+\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow I'\left(7,-1\right)\)
\(T_{\overrightarrow{v}}\left(C\right)=\left(C'\right)\) có tâm \(I'\left(7,-1\right)R=4\)
\(\Rightarrow\left(C'\right):\left(x-7\right)^2+\left(y+1\right)^2=4\)
Đường tròn (C) tâm \(I\left(-2;2\right)\) bán kính \(R=3\)
Do d' là ảnh của d qua phép tịnh tiến nên pt d' có dạng \(4x+3y+c=0\)
d' tiếp xúc (C) \(\Leftrightarrow d\left(I;d'\right)=R\)
\(\Leftrightarrow\frac{\left|-8+6+c\right|}{\sqrt{4^2+3^2}}=3\Rightarrow\left|c-2\right|=15\Rightarrow\left[{}\begin{matrix}c=17\\c=-13\end{matrix}\right.\)
Có 2 đường thẳng d': \(\left[{}\begin{matrix}4x+3y+17=0\\4x+3y-13=0\end{matrix}\right.\)
Chọn \(A\left(0;\frac{1}{3}\right)\in d\)
Gọi A' là ảnh của A qua phép tịnh tiến T thì \(A'\left(a;2-a+\frac{1}{3}\right)\Rightarrow A'\left(a;\frac{7}{3}-a\right)\)
Do \(A'\in d'\Rightarrow\left[{}\begin{matrix}4a+3\left(\frac{7}{3}-a\right)+17=0\\4a+3\left(\frac{7}{3}-a\right)-13=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=-24\\a=-6\end{matrix}\right.\)
Gọi vecto tịnh tiến có dạng \(\overrightarrow{v}=\left(a;0\right)\)
\(M\left(0;-1\right)\) là 1 điểm thuộc d
M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)
\(\left\{{}\begin{matrix}x_{M'}=0+a=a\\y_{M'}=-1+0=-1\end{matrix}\right.\) \(\Rightarrow M'\left(a;-1\right)\)
Thay vào pt d':
\(a-1-1=0\Leftrightarrow a=2\)
Vậy \(\overrightarrow{v}=\left(2;0\right)\)
thầy ơi cho em hỏi vì sao vecto v lại biết đc số 0 là y v thầy
Câu 1:
Lấy $M(x,y)\in (d)$. $M'(x',y')=T_{\overrightarrow{v}}(M)$
\(\left\{\begin{matrix} x'-x=2\\ y'-y=-1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x'-2\\ y=y'+1\end{matrix}\right.\)
Ảnh của $d$ qua phép tịnh tiến theo vecto $\overrightarrow{v}$ có dạng:
$3(x'-2)-2(y'+1)+1=0$
$\Leftrightarrow 3x'-2y'-7=0$
Câu 2:
$M(x,y)$ là 1 điểm thuộc đường tròn $(C)$.
Lấy $M'(x',y')$ là 1 điểm thuộc $(C')$ là ảnh của $(C)$ qua $\overrightarrow{v}$
Khi đó, $M'=T_{\overrightarrow{v}}(M)
\(\Rightarrow \left\{\begin{matrix} x'-x=-3\\ y'-y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x'+3\\ y=y'-5\end{matrix}\right.\)
PTĐTr $(C')$ có dạng:
$(x'+3)^2+(y'-5)^2-4(x'+3)+6(y'-5)+5=0$
$\Leftrightarrow x'^2+y'^2+2x'-4y'-3=0$
gọi M(x,y) là 1 điểm thuộc (C) , M'(x';y') thuộc ảnh của (C) là ảnh của M qua phép tịnh tiến theo vecto u
=> \(\hept{\begin{cases}x'-x=-2\\y'-y=4\end{cases}}\Rightarrow\hept{\begin{cases}x=x'+2\\y=y'-4\end{cases}}\\ \)
thay x,y vào pt đường tròn (C)=> \(\left(x'+2\right)^2+\left(y'-4\right)^2-3\left(x'+2\right)+4\left(y'-4\right)-5=0\)
=> \(x'^2+4x'+4+y'^2-8y'+16-3x'-6+4y'-16-5=0\)
=>\(x'^2+x'+y'^2-4y'-7=0\)=>\(\left(x'+\frac{1}{2}\right)^2+\left(y'-2\right)^2=\frac{45}{4}\)