K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 9 2020

2.

Phương trình (C) là đường tròn khi và chỉ khi \(m^2-2m>0\Rightarrow\left[{}\begin{matrix}m>2\\m< 0\end{matrix}\right.\)

Khi đó (C) là đường tròn tâm \(A\left(0;1\right)\) bán kính \(R=\sqrt{m^2-2m}\)

Pt (C'): \(\left(x-1\right)^2+y^2=2m^2-3m\)

(C') là pt đường tròn khi và chỉ khi \(2m^2-3m>0\Rightarrow\left[{}\begin{matrix}m>\frac{3}{2}\\m< 0\end{matrix}\right.\)

Khi đó (C') là đường tròn tâm \(B\left(1;0\right)\) bán kính \(\sqrt{2m^2-3m}\)

Tồn tại một phép tịnh tiến biến (C) thành (C') khi và chỉ khi (C) và (C') có cùng bán kính

\(\Leftrightarrow\sqrt{m^2-2m}=\sqrt{2m^2-3m}\)

\(\Leftrightarrow m^2-2m=2m^2-3m\)

\(\Leftrightarrow m^2-m=0\Rightarrow\left[{}\begin{matrix}m=0\left(l\right)\\m=1\left(l\right)\end{matrix}\right.\)

Vậy không tồn tại m thỏa mãn

NV
6 tháng 9 2020

1.

Phép tịnh tiến theo \(\overrightarrow{v}=\left(a;b\right)\) biến d thành d' cùng phương với d

\(\Rightarrow\) Phương trình d' có dạng: \(x+y+c=0\)

Đường tròn (C) tâm \(I\left(3;3\right)\) bán kính \(R=\sqrt{2}\)

Do d' tiếp xúc (C) \(\Leftrightarrow d\left(I;d'\right)=R\)

\(\Leftrightarrow\frac{\left|3+3+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Leftrightarrow\left|c+6\right|=2\)

\(\Rightarrow\left[{}\begin{matrix}c=-8\\c=-4\end{matrix}\right.\)

Có 2 đường thẳng d' thỏa mãn: \(\left[{}\begin{matrix}x+y-8=0\\x+y-4=0\end{matrix}\right.\)

Ứng với đó ta có 2 dạng vecto \(\overrightarrow{v}=\left(a;8-a\right)\) hoặc \(\overrightarrow{v}=\left(a;4-a\right)\)

NV
18 tháng 10 2020

1.

Do \(\overrightarrow{v}\) cùng phương với \(\overrightarrow{u}\) nên \(\overrightarrow{v}=\left(a;a\right)\) với a là số thực khác 0

Chọn \(M\left(0;0\right)\) là 1 điểm thuộc d

Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)

\(\left\{{}\begin{matrix}x_{M'}=a+0=a\\y_{M'}=a+0=a\end{matrix}\right.\) \(\Rightarrow M'\left(a;a\right)\)

Thay vào pt d' ta được:

\(a+a-4=0\Rightarrow a=2\)

\(\Rightarrow\overrightarrow{v}=\left(2;2\right)\)

\(\Rightarrow\left|\overrightarrow{v}\right|=2\sqrt{2}\)

NV
18 tháng 10 2020

2.

Gọi \(\overrightarrow{u}=\left(a;b\right)\)

Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d

Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow A'\in d'\)

Ta có: \(\left\{{}\begin{matrix}x_{A'}=a\\y_{A'}=b+1\end{matrix}\right.\)

Thay tọa độ A' vào pt d' ta được: \(a+b+1-5=0\Leftrightarrow a+b=4\)

Ta có:

\(\left|\overrightarrow{u}\right|=\sqrt{a^2+b^2}\ge\sqrt{\frac{1}{2}\left(a+b\right)^2}=2\sqrt{2}\)

\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=2\sqrt{2}\) khi \(a=b=2\)

2 tháng 10 2021

(C) có \(\left\{{}\begin{matrix}I\left(4,0\right)\\R=4\end{matrix}\right.\)

\(T_{\overrightarrow{v}}\left(I\right)=I'(x',y')\Rightarrow\left\{{}\begin{matrix}x'=x+a=4+3=7\\y'=y+a=0+\left(-1\right)=-1\end{matrix}\right.\)   \(\Rightarrow I'\left(7,-1\right)\)

\(T_{\overrightarrow{v}}\left(C\right)=\left(C'\right)\) có tâm \(I'\left(7,-1\right)R=4\)

  \(\Rightarrow\left(C'\right):\left(x-7\right)^2+\left(y+1\right)^2=4\)

17 tháng 8 2019

đường tăng à ?

27 tháng 8 2019

Là sao

NV
18 tháng 8 2020

Đường tròn (C) tâm \(I\left(-2;2\right)\) bán kính \(R=3\)

Do d' là ảnh của d qua phép tịnh tiến nên pt d' có dạng \(4x+3y+c=0\)

d' tiếp xúc (C) \(\Leftrightarrow d\left(I;d'\right)=R\)

\(\Leftrightarrow\frac{\left|-8+6+c\right|}{\sqrt{4^2+3^2}}=3\Rightarrow\left|c-2\right|=15\Rightarrow\left[{}\begin{matrix}c=17\\c=-13\end{matrix}\right.\)

Có 2 đường thẳng d': \(\left[{}\begin{matrix}4x+3y+17=0\\4x+3y-13=0\end{matrix}\right.\)

Chọn \(A\left(0;\frac{1}{3}\right)\in d\)

Gọi A' là ảnh của A qua phép tịnh tiến T thì \(A'\left(a;2-a+\frac{1}{3}\right)\Rightarrow A'\left(a;\frac{7}{3}-a\right)\)

Do \(A'\in d'\Rightarrow\left[{}\begin{matrix}4a+3\left(\frac{7}{3}-a\right)+17=0\\4a+3\left(\frac{7}{3}-a\right)-13=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=-24\\a=-6\end{matrix}\right.\)

NV
1 tháng 11 2020

Gọi vecto tịnh tiến có dạng \(\overrightarrow{v}=\left(a;0\right)\)

\(M\left(0;-1\right)\) là 1 điểm thuộc d

M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)

\(\left\{{}\begin{matrix}x_{M'}=0+a=a\\y_{M'}=-1+0=-1\end{matrix}\right.\) \(\Rightarrow M'\left(a;-1\right)\)

Thay vào pt d':

\(a-1-1=0\Leftrightarrow a=2\)

Vậy \(\overrightarrow{v}=\left(2;0\right)\)

12 tháng 9 2021

thầy ơi cho em hỏi vì sao vecto v lại biết đc số 0 là y v thầy

 

AH
Akai Haruma
Giáo viên
20 tháng 10 2020

Câu 1:

Lấy $M(x,y)\in (d)$. $M'(x',y')=T_{\overrightarrow{v}}(M)$

\(\left\{\begin{matrix} x'-x=2\\ y'-y=-1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x'-2\\ y=y'+1\end{matrix}\right.\)

Ảnh của $d$ qua phép tịnh tiến theo vecto $\overrightarrow{v}$ có dạng:

$3(x'-2)-2(y'+1)+1=0$

$\Leftrightarrow 3x'-2y'-7=0$

AH
Akai Haruma
Giáo viên
20 tháng 10 2020

Câu 2:

$M(x,y)$ là 1 điểm thuộc đường tròn $(C)$.

Lấy $M'(x',y')$ là 1 điểm thuộc $(C')$ là ảnh của $(C)$ qua $\overrightarrow{v}$

Khi đó, $M'=T_{\overrightarrow{v}}(M)

\(\Rightarrow \left\{\begin{matrix} x'-x=-3\\ y'-y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x'+3\\ y=y'-5\end{matrix}\right.\)

PTĐTr $(C')$ có dạng:

$(x'+3)^2+(y'-5)^2-4(x'+3)+6(y'-5)+5=0$

$\Leftrightarrow x'^2+y'^2+2x'-4y'-3=0$

13 tháng 10 2019

chịu òi 

13 tháng 10 2019

gọi M(x,y) là 1 điểm thuộc (C) , M'(x';y') thuộc ảnh của  (C) là ảnh của M qua phép tịnh tiến theo vecto u

=> \(\hept{\begin{cases}x'-x=-2\\y'-y=4\end{cases}}\Rightarrow\hept{\begin{cases}x=x'+2\\y=y'-4\end{cases}}\\ \)

thay x,y vào pt đường tròn (C)=> \(\left(x'+2\right)^2+\left(y'-4\right)^2-3\left(x'+2\right)+4\left(y'-4\right)-5=0\)

=> \(x'^2+4x'+4+y'^2-8y'+16-3x'-6+4y'-16-5=0\)

=>\(x'^2+x'+y'^2-4y'-7=0\)=>\(\left(x'+\frac{1}{2}\right)^2+\left(y'-2\right)^2=\frac{45}{4}\)