K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

Đường tròn (C) có tâm I(1; m), bán kính R = 5. 
Gọi H là trung điểm của dây cung AB. 
Ta có IH là đường cao của tam giác IAB:

undefined

27 tháng 6 2016

Mình làm ở words rồi copy vô paint, tại đang nghe nhạc nên có hình KM ở góc phải

NV
23 tháng 4 2019

Viết lại pt (C):

\(\left(x-1\right)^2+\left(y-m\right)^2=25\) \(\Rightarrow\left\{{}\begin{matrix}I\left(1;m\right)\\R=5\end{matrix}\right.\)

Ý bạn là tam giác ABI? Không thấy C nào ở đây

Đặt \(d\left(I;AB\right)=k\)

Ta có \(S_{ABI}=\frac{1}{2}AB.d\left(I;AB\right)=\frac{AB}{2}.k=\sqrt{R^2-k^2}.k=12\)

\(\Rightarrow k^2\left(R^2-k^2\right)=144\Rightarrow k^4-25k^2+144=0\Rightarrow\left[{}\begin{matrix}k^2=16\\k^2=9\end{matrix}\right.\)

Áp dụng công thức khoảng cách:

\(d\left(I;AB\right)=\frac{\left|m+4m\right|}{\sqrt{m^2+16}}=k\Leftrightarrow\left|5m\right|=k\sqrt{m^2+16}\)

\(\Leftrightarrow25m^2=k^2m^2+16k^2\)

- Với \(k^2=16\Rightarrow25m^2=16m^2+16^2\Rightarrow m^2=\left(\frac{16}{9}\right)^2\Rightarrow m=\pm\frac{16}{9}\)

- Với \(k^2=9\Rightarrow25m^2=9m^2+144\Rightarrow16m^2=144\Rightarrow m=\pm3\)

Bài 1: Cho đường thẳng d : (1 - m2)x + 2my + m2 - 4m + 1 = 0. Viết phương trình đường tròn (C) luôn tiếp xúc với d với mọi m. Bài 2: Cho (Cα) : (x2 + y2)sin α = 2( x cos α + y sin α - cos α) (α ≠ k π) a, CMR: (Cα) luôn là một đường tròn. Định tâm và bán kính của (Cα). b, CMR: (Cα) có một tiếp tuyến cố định mà ta sẽ xác định phương trình. Bài 3: Biện luận tùy theo m sự tương giao của đường thẳng...
Đọc tiếp

Bài 1: Cho đường thẳng d : (1 - m2)x + 2my + m2 - 4m + 1 = 0. Viết phương trình đường tròn (C) luôn tiếp xúc với d với mọi m.

Bài 2: Cho (Cα) : (x2 + y2)sin α = 2( x cos α + y sin α - cos α) (α ≠ k π)

a, CMR: (Cα) luôn là một đường tròn. Định tâm và bán kính của (Cα).

b, CMR: (Cα) có một tiếp tuyến cố định mà ta sẽ xác định phương trình.

Bài 3: Biện luận tùy theo m sự tương giao của đường thẳng (△) và đường tròn (C).

a, (C): x2 + y2 + 2x - 4y + 4 = 0 và (△): mx - y + 2 = 0.

b, (C): x2 + y2 - 4x + 6y + 3 = 0 và (△): 3x - y + m = 0.

Bài 4: Cho đường tròn (C): x2 + y2 - 2x - 4y - 4 = 0 và (C'): x2 + y2 + 6x - 2y + 1 = 0.

a, Chứng minh (C) và (C') cắt nhau tại hai điểm A, B.

b, Cho điểm M(4;1). Chứng minh qua M có hai tiếp tuyến đến (C). Gọi E, F là hai tiếp điểm của hai tiếp tuyến trên với (C). Hãy lập phương trình đường tròn (C) ngoại tiếp với △ MEF.

0
1 tháng 4 2018

mk chỉ cho cách lm ; bn tự lm cho bt nha

câu a : lập bảng sét dấu tìm được \(x\) để \(y>0;y< 0\)

tiếp là đưa nó về dạng bình phương 1 số cộng 1 số \(\left(n^2+m\right)\) rồi tìm \(y_{min}\)

câu b : giao điểm của \(\left(P\right)\) và đường thẳng \(\left(d\right):y=2x+1\)

là nghiệm của hệ phương trình : \(\left\{{}\begin{matrix}y=x^2-2x-1\\y=2x+1\end{matrix}\right.\)

Để (Pm) là đồ thị của hàm số bậc hai thì m-1<>0

hay m<>1

Phương trình hoành độ giao điểm là:

\(\left(m-1\right)x^2+\left(2m-4\right)x-5-4x+m=0\)

\(\Leftrightarrow\left(m-1\right)x^2+\left(2m-8\right)x+m-5=0\)

\(\text{Δ}=\left(2m-8\right)^2-4\left(m^2-6m+5\right)\)

\(=4m^2-32m+64-4m^2+24m-20\)

\(=-8m+44\)

Để phương trình có hai nghiệm phân biệt thì -8m+44>0

=>-8m>-44

hay m<11/2

Theo đề, ta có: \(\left(x_1+x_2\right)^2-4x_1x_2=4\)

\(\Leftrightarrow\dfrac{\left(2m-8\right)^2}{\left(m-1\right)^2}-4\cdot\dfrac{m-5}{m-1}=4\)

\(\Leftrightarrow\left(2m-8\right)^2-4\left(m^2-6m+5\right)=4\left(m-1\right)^2\)

\(\Leftrightarrow4m^2-32m+64-4m^2+24m-20=4\left(m^2-2m+1\right)\)

\(\Leftrightarrow4m^2-8m+4-8m-44=0\)

\(\Leftrightarrow4m^2-16m-40=0\)

\(\Leftrightarrow m^2-4m-10=0\)

\(\Leftrightarrow\left(m-2\right)^2=14\)

hay \(m\in\left\{\sqrt{14}+2;-\sqrt{14}+2\right\}\)

NV
2 tháng 6 2020

Đường tròn (C) tâm \(I\left(-2;-2\right)\) bán kính \(R=\sqrt{2}\)

\(S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}\le\frac{1}{2}IA.IB=\frac{1}{2}R^2\)

Dấu "=" xảy ra khi \(sin\widehat{AIB}=1\) hay tam giác \(AIB\) vuông cân tại I

Gọi H là trung điểm AB \(\Rightarrow d\left(I;AB\right)=IH=\frac{R}{\sqrt{2}}=1\)

Áp dụng công thức khoảng cách:

\(\frac{\left|-2-2m-2m+3\right|}{\sqrt{1^2+m^2}}=1\)

\(\Leftrightarrow\left|4m-1\right|=\sqrt{m^2+1}\)

\(\Leftrightarrow16m^2-8m+1=m^2+1\)

\(\Leftrightarrow15m^2-8m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=\frac{8}{15}\end{matrix}\right.\)

9 tháng 5 2022

Tại sao chỗ áp dụng công thức khoảng cách lại dùng d(I;d). Trong khi IH = d (I;Δ) vậy ạ

 

1 tháng 11 2018

a) đường thẳng d: y=x-2m+3 tiếp xúc (P)

\(\Leftrightarrow\)PT \(x^2-2x+1=x-2m+3\) có nghiệm kép

\(\Leftrightarrow x^2-3x-2+2m=0..có..\Delta=0\\ \Leftrightarrow9+8-8m=0\Leftrightarrow m=\dfrac{17}{8}\)

b)cắt (P) tại 2 điểm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow m< \dfrac{17}{8}\)(1)

2 điểm có hoành độ dương \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{b}{a}>0\\\dfrac{c}{a}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3>0\\-2+2m>0\end{matrix}\right.\Rightarrow}}m>-1\left(2\right)\)

*xl nha ct (2) mik viết mãi vx bị lỗi...*

từ (1) và (2) =>-1<m<17/8

c)cắt tại 2 điểm phân biệt =>m<17/8

\(x_1^3+x_2^3-4\left(x_1+x_2\right)=5\Rightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)-4\left(x_1+x_2\right)=5\\ \Rightarrow3\cdot\left(3^2-3\left(2m-2\right)\right)-4\cdot3=5\Rightarrow m=-\dfrac{1}{3}\left(TM\right)\)