K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2023

 mình cần gấp nha

19 tháng 1 2023

haha

30 tháng 3 2019

Câu 1 là vuông góc với AB chứ không phải vuông góc với A nha. Mình đánh nhanh nên nhầm

2 tháng 6 2021

a) Vì AB là đường kính \(\Rightarrow\angle ACB=\angle ADB=90\Rightarrow ECHD\) nội tiếp

b) ECHD nội tiếp \(\Rightarrow\angle CEH=\angle CDH=\angle CDA=\angle CBA\)

Xét \(\Delta CEH\) và \(\Delta CBA:\) Ta có: \(\left\{{}\begin{matrix}\angle CEH=\angle CBA\\\angle ECH=\angle BCA=90\end{matrix}\right.\)

\(\Rightarrow\Delta CEH\sim\Delta CBA\left(g-g\right)\Rightarrow\dfrac{CE}{HC}=\dfrac{BC}{AC}\Rightarrow CE.AC=BC.HC\)

2 tháng 6 2021

a, xét nửa đường tròn đường kính AB 

có tam giác ABD nội tiếp => góc ADE=90 độ

có tam giác ABC nội tiếp=> góc BCE=90 độ

=>góc ADE+góc BCE=180 độ 

mà 2 góc này đối diện=>tứ giác ECHD nội tiếp

b, xét tam giác ADE và tam giác BCE có

góc E chung, góc ADE= góc BCE(cmt)

=>tam giác ADE đồng dạng tam giác BCE(g.g)

=>\(\dfrac{ED}{EC}=\dfrac{AD}{BC}< =>\dfrac{EC}{BC}=\dfrac{ED}{AD}\)(1)

xét tam giác ACH và tam giác ADE có

góc A chung, góc ACH= góc ADE(=90 độ)

=>tam giác ACH đồng dạng tam giác ADE(g.g)

=>\(\dfrac{AC}{AD}=\dfrac{HC}{DE}\)<=>\(\dfrac{ED}{AD}=\dfrac{HC}{AC}\left(2\right)\)

từ(1)(2)=>\(\dfrac{HC}{AC}=\dfrac{EC}{BC}=>EC.AC=HC.BC\left(dpcm\right)\)

16 tháng 12 2015

tick mik đc 300 điểm hỏi đáp nha,mik sẽ tick lại

20 tháng 11 2017

a/ * dựa vào tính chất đường trung tuyến ứng vs 1 cạnh = 1/2 cạnh ấy thì tam giác đó vuông ta sẽ CM đc tg BCD vuông tại C

    *Có AC=AB(vì đg thẳng là tiếp tuyến của đg tròn vuông góc với bk đi qua tiếp điểm)

=>A cách đều A và B

=>AH vuông góc BC

b/Áp dụng hệ thức lượng trong tam giác vuông ABO có : OH.OA=OB^2=R^2

mk cx đg làm bài này nhg ms chỉ đến đây thôi

16 tháng 12 2016

A C D B H K a) Ta có OB=OC (cùng là bán kính (O))

AB=AC (tính chất 2 tiếp tuyến cắt nhau tại A)

→O và A cách đều 2 đầu đoạn thẳng BC

→OA là đường trung trực của BC

→OA \(\perp\) BC

Xét Δ OBA vuông tại B có đường cao BH:

OB2= OH . OA (hệ thức lượng)

mà OB=R (OB là bán kính của (O))

→R2 =OH.OA

b)Xét ΔDBC nội tiếp (O) có đường kính BD

→ΔDBC vuộng tại C có cạnh huyền BD

→BC\(\perp\) CD mà OA\(\perp\)BC (cmt)

→OA song song CD

Ta có : AB song song CK (cùng \(\perp\) BD)

Xét ΔOBA vuông tại B

ΔDKC vuông tại K , có

\(\widehat{BOA}\) = \(\widehat{KDC}\) ( 2 góc đồng vị của OA song song CD)

→ΔOBA đồng dạng ΔDKC (g.n)

\(\frac{OB}{DK}\) =\(\frac{OA}{DC}\) =\(\frac{BA}{KC}\) (tỉ số đồng dạng)

→OA . CK=AB. CD

mà AB=AC (tính chất 2 tiếp tuyến cắt nhau tại A)

→AC . CD= CK . OA (đpcm)