\(\dfrac{-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

c/m 0<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\)

\(=\dfrac{4a^2b^3}{8\sqrt{2}a^3b^3}\)

\(=\dfrac{1}{2\sqrt{2}a}\)

\(=\dfrac{\sqrt{2}}{4a}\)

b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

chịu đấy :v

c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{3-x}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{-\left(x-3\right)}+\dfrac{x^2-1}{x-3}\)

\(=-\dfrac{x-2}{x-3}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{-\left(x-2\right)+x^2-1}{x-3}\)

\(=\dfrac{-x+1+x^2}{x-3}\)

d) \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(x-1\right)^2}\)

\(=\dfrac{1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{x-1}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(\sqrt{y}-1\right)\left(x-1\right)}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{x\sqrt{y}-\sqrt{y}-x+1}\)

e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\dfrac{\sqrt{x^2\cdot\left(x+2\right)}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\sqrt{x^2}\)

\(=4x-2\sqrt{x}+x\)

\(=5x-2\sqrt{2}\)

8 tháng 6 2017

bạn ơi phần c mình sai đề bài.. bạn giúp mk giải lại đc k \(\sqrt{\dfrac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

a ) \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x-1}{\sqrt{x}}\)

b )Tại \(x=3+2\sqrt{2}\Rightarrow\) \(M=\dfrac{3+2\sqrt{2}-1}{\sqrt{3+2\sqrt{2}}}=\dfrac{2+2\sqrt{2}}{\sqrt{2}+1}=2\)

c ) Dễ thấy \(\sqrt{x}>0\) . Để \(M< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)

Kết hợp với điều kiện ban đầu \(\Rightarrow0< x< 1\)

3 tháng 3 2019

a, ĐKXĐ: \(x>0,x\ne1\)

Ta có: \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}\right)^2-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}=\dfrac{x-1}{\sqrt{x}}\)

b, Ta có: \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\)

Với ĐKXĐ: \(x>0,x\ne1\)

Ta có: \(M=\dfrac{x-1}{\sqrt{x}}\)

Thay \(x=3+2\sqrt{2}\) vào M ta được:

\(M=\dfrac{3+2\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{2+2\sqrt{2}}{\sqrt{2}+1}=\dfrac{2\left(1+\sqrt{2}\right)}{\sqrt{2}+1}=2\)

Vậy M = 2 tại \(x=3+2\sqrt{2}\)

c, Để M < 0 thì \(\dfrac{x-1}{\sqrt{x}}< 0\)

mà theo ĐKXĐ,ta có: \(x>0\Rightarrow\sqrt{x}>0\)

=> Để \(\dfrac{x-1}{\sqrt{x}}< 0\) thì x - 1 < 0 => x < 1

=.= hk tốt!!

24 tháng 12 2018

ĐK: \(x>0,x\ne1\)

a) \(M=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left[\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right]=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]:\left[\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]=\left(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\right):\left[\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}\right]=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

b) Ta có \(M< 0\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}< 0\)(*)

\(\sqrt{x}+1>0\)

(*)\(\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)

Kết hợp với ĐK, Vậy 0<x<1 thì M<0

15 tháng 8 2018

a/\(x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{\left(x-3\right)^2}=x+3+\left|x-3\right|=x+3+3-x=6\)

b/ \(\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{\left(x+2\right)^2}-\left|x\right|=\left|x+2\right|-\left|x\right|=-x-2-\left(-x\right)=-x-2+x=-2\)

c/ \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\cdot\left(x-1\right)=\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=\left|x-1\right|\)

d/ \(\left|x-2\right|+\dfrac{\sqrt{x^2-4x+4}}{x-2}=2-x+\dfrac{\sqrt{\left(x-2\right)^2}}{x-2}=2-x+\dfrac{\left|x-2\right|}{x-2}=2-x+\dfrac{-\left(x-2\right)}{x-2}=2-x-1=1-x\)

10 tháng 8 2018

bài 2: ta có : \(Q=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{1-a}{\sqrt{1-a^2}-\left(1-a\right)}\right)\left(\sqrt{\dfrac{1}{a^2}-1}-\dfrac{1}{a}\right).\sqrt{a^2-2a+1}\)

\(\Leftrightarrow Q=\left(\dfrac{\sqrt{1+a}\sqrt{1-a}+1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\dfrac{\sqrt{1-a^2}}{a}-\dfrac{1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right)\left(\dfrac{\sqrt{1-a^2}-1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{\sqrt{1-a^2}+1}{a}\right)\left(\dfrac{\sqrt{1-a^2}-1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{1-a^2-1}{a^2}\right)\left(1-a\right)=a-1\)

b) ta có : \(Q^3-Q=\left(a-1\right)\left(\left(a-1\right)^2-1\right)=a\left(a-1\right)\left(a-2\right)\)

mà ta có : \(\left\{{}\begin{matrix}a>0\\a-1< 0\\a-2< 0\end{matrix}\right.\Rightarrow a\left(a-1\right)\left(a-2\right)>0\) \(\Rightarrow Q^3-Q>0\Leftrightarrow Q^3>Q\)

vậy \(Q^3>Q\)

10 tháng 8 2018

Nguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh Hằngsoyeon_Tiểubàng giảiMashiro ShiinaVõ Đông Anh Tuấn

Hoàng Lê Bảo NgọcTrần Việt Linh

cứu tôi với

a: \(P=\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)-8x}{x-4}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4x-8\sqrt{x}-8x}{x-4}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}\)

\(=\dfrac{-4x-8\sqrt{x}}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}}{-\sqrt{x}+3}\)

\(=\dfrac{-4\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-3}=\dfrac{4x}{\sqrt{x}-3}\)

b để P=-1 thì \(\dfrac{4x}{\sqrt{x}-3}=-1\)

\(\Leftrightarrow4x=-\sqrt{x}+3\)

\(\Leftrightarrow4x+\sqrt{x}-3=0\)

\(\Leftrightarrow4x+4\sqrt{x}-3\sqrt{x}-3=0\)

\(\Leftrightarrow4\sqrt{x}-3=0\)

hay x=9/16

c: Để P<0 thì \(\sqrt{x}-3< 0\)

hay 0<x<9

2 tháng 9 2017

a) Đặt \(\sqrt{x}=a\) (a >/0, a khác +-1)

Ta có: \(Q=\dfrac{a^2+a+1}{a^2+1}:\left(\dfrac{1}{a-1}-\dfrac{2a}{a^3+a-a^2-1}\right)\)

\(=\dfrac{a^2+a+1}{a^2+1}:\dfrac{a^2+1-2a}{\left(a^2+1\right)\left(a-1\right)}\)

\(=\dfrac{a^2+a+1}{a^2+1}\cdot\dfrac{\left(a^2+1\right)\left(a-1\right)}{\left(a-1\right)^2}\)

\(=\dfrac{a^2+a+1}{a-1}\)

\(\Rightarrow Q=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}\)

b) \(Q>1\Leftrightarrow x+\sqrt{x}+1>\sqrt{x}-1\Leftrightarrow\sqrt{x}+2>0\) (luôn đúng)

=> Q > 0 với mọi x >/0, x khác +-1

2 tháng 9 2017

a) \(P=\left(\dfrac{2}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{2}{\sqrt{1-a^2}}+1\right)\)

\(=\dfrac{2+\sqrt{1+a^2}}{\sqrt{1+a}}\cdot\dfrac{\sqrt{1-a^2}}{2+\sqrt{1-a^2}}=\sqrt{1-a}\)

b) \(a=\dfrac{24}{49}\Rightarrow P=\sqrt{1-\dfrac{24}{49}}=\sqrt{\dfrac{25}{49}}=\dfrac{5}{7}\)

c) \(P=2\Leftrightarrow\sqrt{1-a}=2\Leftrightarrow1-a=4\Leftrightarrow a=-3\left(L\right)\)

kl;...