Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5\left(x+7\right)-10=2^3\cdot5\)
\(\Rightarrow5\left(x+7\right)-10=40\)
\(\Rightarrow5\left(x+7\right)=40+10\)
\(\Rightarrow x+7=\dfrac{50}{5}\)
\(\Rightarrow x+7=10\)
\(\Rightarrow x=10-7\)
\(\Rightarrow x=3\)
b) \(9x-2\cdot3^2=3^4\)
\(\Rightarrow9x-18=81\)
\(\Rightarrow9x=81+18\)
\(\Rightarrow9x=99\)
\(\Rightarrow x=\dfrac{99}{9}\)
\(\Rightarrow x=11\)
c) \(5^{25}\cdot5^{x-1}=5^{25}\)
\(\Rightarrow5^{x-1}=5^{25}:5^{25}\)
\(\Rightarrow5^{x-1}=1\)
\(\Rightarrow5^{x-1}=5^0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a) x=3
b) x=1
c) x=1 hoặc -5
d) x=2
e) x=2
g) x=2
h) x=1 hoặc x=0 hoặc x=-1
i) x=-1 hoặc x=0
\(a.4^x=64\)
\(4^x=4^3\)
\(\Rightarrow x=3\)
\(b,3^{x\times4}=81\)
\(3^{x\times4}=3^4\)
\(x\times4=4\)
\(\Rightarrow x=1\)
\(c,\left(2+x\right)^4=81\)
\(\left(2+x\right)^4=3^4\)
\(2+x=3\)
\(x=3-2\)
\(x=1\)
\(d,5^{x\times5}=125\)
\(5^{x\times5}=5^3\)
\(x\times5=3\)
\(x=3:5\)
\(x=\frac{3}{5}\)
a) \(A=2+2^2+...+2^{2024}\)
\(2A=2^2+2^3+...+2^{2025}\)
\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)
\(A=2^{2025}-2\)
b) \(2A+4=2n\)
\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)
\(\Rightarrow2^{2026}-4+4=2n\)
\(\Rightarrow2n=2^{2026}\)
\(\Rightarrow n=2^{2026}:2\)
\(\Rightarrow n=2^{2025}\)
c) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)
\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)
d) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)
\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)
\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)
Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7
⇒ A : 7 dư 2
a) 25+x=0
x=0-25
x=-25
b)\(2^x:2^{19}=2^{25}\)
\(2^x=2^{25}.2^{19}\)
\(2^x=2^{44}\)
=>x=44
c)\(5^x.5^{18}=5^{54}\)
\(5^x=5^{54}:5^{18}\)
\(5^x=5^{36}\)
=>x=36
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a) Có A=\(1+3+3^2+3^3+....+3^{100}\)
\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)
Bài b/c/d : bn cứ lm tương tự.
1. a) 4.415.8.25.125
= (4.25). (8.125).415
= 100.1000.415
= 100000.415
= 41500000
b) 2.31.12+4.42.6+8.27.3
= (2.31.12)+(4.42.6)+(8.27.3)
= (2.12).31+(4.6).42+(8.3).27
= 24.31+24.42+24.27
= 24 (31+42+27)
= 24.100
= 2400
a, \(390-\left(x-7\right)=13^2:12\)
\(390-\left(x-7\right)=\) \(\dfrac{169}{12}\)
\(x-7=390-\dfrac{169}{12}\)
\(x-7=\dfrac{4511}{12}\)
\(x=\dfrac{4511}{12}+7\)
\(x=\dfrac{4595}{12}\)
Vậy ...
b, \(\left(x-35.2^2\right):7=3^3-24\)
\(\left(x-35.4\right):7=27-24\)
\(\left(x-140\right):7=3\)
\(\Leftrightarrow\left(x-140\right)=3.7\)
\(\Leftrightarrow x-140=21\)
\(\Leftrightarrow x=161\)
Vậy .....
c) \(x-6:2-\left(4^2.3-24\right):2:6=3\)
\(x-3-\left(16.3-24\right):2:6=3\)
\(x-3-\left(48-24\right):2:6=3\)
\(x-3-24:2:6=3\)
\(x-3-2=3\)
\(x=3+2+3\)
\(x=8\)
Vậy ......
d) \(4x-5=5+5^2+5^3+.....+5^{99}\)
Đặt :
\(A=5+5^2+.........+5^{99}\)
\(\Leftrightarrow5A=5^2+5^3+..........+5^{100}\)
\(\Leftrightarrow5A-A=\left(5^2+5^3+......+5^{100}\right)-\left(5+5^2+....+5^{99}\right)\)
\(\Leftrightarrow4A=5^{100}-5\)
\(\Leftrightarrow A=\dfrac{5^{100}-5}{4}\)
\(\Leftrightarrow4x+5=\dfrac{5^{100}-5}{4}\)
Đến đây thì sao nữa nhỉ ?
e) \(\left(2x-1\right)^4=625\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^4=5\\\left(2x-1\right)^4=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy ....
Bài 9,
62x73+36x33=36x73+36x27=36(73+27)=36x100=3600.
197-\([\)6x(5-1)2+20220\(]\):5=197-\([\)6x16+1\(]\):5=197-97:5=197-97/5=888/5.
Bài 10,
21-4x=13
=>4x=21-13=8
=>x=8:4=2.
30:(x-3)+1=45:43=42=16
=>30:(x-3)=16-1=15
=>x-3=30:15=2
=>x=2+3=5.
(x-1)3+5x6=38
=>(x-1)3+30=38
=>(x-1)3=38-30=8=23
=>x-1=2
=>x=3.
Bài 1:
2\(x\) = 4
2\(^x\) = 22
\(x=2\)
Vậy \(x=2\)
Bài 2:
2\(^x\) = 8
2\(^x\) = 23
\(x=3\)
Vậy \(x=3\)
C = 5 + 52 + 53 + ... + 599
5C = 52 + 53 + ... + 5100
5C - C = ( 52 + 53 + ... + 5100 ) - ( 5 + 52 + 53 + ... + 599 )
4C = 5100 - 5
=> 52x - 5= 5100 - 5
=> 52x = 5100
=> x = 598