Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
a/ \(A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{57}+3^{58}+3^{59}+3^{60}\right)\)
\(A=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\)
\(A=40\left(3+3^5+3^9+...+3^{53}+3^{57}\right)\)Chia hết cho 4; 5
Ta cũng có
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(A=13\left(3+3^4+3^7+...+3^{55}+3^{58}\right)\) chia hết cho 13
b/ \(3A=3^2+3^3+3^4+...+3^{61}\)
\(A=\frac{3A-A}{2}=\frac{3^{61}-3}{2}< 3^{61}\)
a/ \(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(A=12+3^2\left(3+3^2\right)+3^{58}\left(3+3^2\right)=12\left(1+3^2+3^4+...+3^{56}+3^{58}\right)\) chia hết cho 12
c/ \(A=3+\left(3^2+3^3+3^4+...+3^{60}\right)\)
\(A=3+3^2\left(1+3+3^2+...+3^{58}\right)\)
Ta có \(3^2\left(1+3+3^2+...+3^{58}\right)\) chia hết cho 9 => A chia 9 dư 3
d/ Từ câu A ta có
\(A=40\left(3+3^5+3^9+...+3^{53}+3^{57}\right)\)=> chữ số tận cùng của A là 0
1. Nhóm 3 số thành 1 cặp thì sẽ chia hết cho 4
VD : 2+2^2+2^3 = 14 chia hết cho 14
2. Từ số thứ 3 thì nhóm 4 số thành 1 cặp
VD : 3^4+3^5+3^6+3^7 = 3^4.(1+3+3^2+3^3) = 3^4.40 chia hết cho 40
Còn lại 2 số đầu = 3^2+3^3 = 36 chia 40 dư 36
=> D chia 40 dư 36
k mk nha
a.
\(C=1+3+3^2+...+3^{21}\\ =\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{20}+3^{21}\right)\\ =4+3^2.4+....+3^{20}.4\\ =4\left(1+3^2+...+3^{20}\right)⋮4\)
b. C chia 3 dư 1