\(3^2+3^3+....+3^{11}\)

chứng minh rằng a, C chia hết cho 13        ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2017

Ta có : \(3C=3+3^2+3^3+......+3^{12}\)
\(\Rightarrow3C-C=\left(3+3^2+3^3+....+3^{12}\right)-\left(1+3+3^2+3^3+...+3^{11}\right)=3^{12}-1=531440\)
 \(hoặc\)\(2C=531140\Rightarrow C=265720\)chia hết cho 13 và 40

13 tháng 10 2018

b, \(C=1+3+3^2+3^3+...+3^{11}\)

      \(=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)

       \(=\left(1+3+9+27\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

        \(=40+...+3^8.40\)

         \(=40.\left(1+...+3^8\right)⋮40\)

\(\Rightarrow\) \(C⋮40\)

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

15 tháng 6 2016

ta có:

\(3C=3+3^2+3^3+...+3^{12}\)

\(2C=3C-C=3^{12}-1\)

\(C=\frac{3^{12}-1}{2}\)

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

* C=(1+3+32)+(33+34+35)+...+(39+310+311)

     = 13+33.(1+3+32)+...+39.(1+3+32)

     = 13+33.13+...+39.13   chia hết cho 13

* Tương tự nhóm 4 số hạng một với nhau.

Chúc bạn học tốt!

3 tháng 7 2016

1. C chia hết cho 13

C=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^9+3^10+3^11)

  =  13 + 3^3.(1+3+3^2)+...+3^9.(1+3+3^2)

  =  13 + 3^3.13+...+3^9.13

  = 13.(3^3+...+3^9) chia hết cho 13

 (vì 13 chia hết cho 13)

2. C chia hết cho 40

C = 1 + 3 + 32 + 33 + ......+311 

C=30+31+32+...311

C = (30 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310+ 311)

C = 30(1 + 3 + 32 + 33) + 34(1 + 3 + 32 + 33) + 38(1 + 3 + 32 + 33)

C = 30.40 + 34. 80 + 38. 40

C= 40(30 + 34 + 38) ( chia hết cho 40 vì tích có thừa số 40 

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

12 tháng 12 2016

b, A = 3+3^2 +3^3 +3^4 +....+3^120 =﴾3+3^2+3^3﴿+......+﴾3^118+3^119+3^120﴿ =3﴾1+3+3^2﴿+....+3^118﴾1+3+3^2﴿ = 3.13+...+3^118. 13 = 13﴾ 3+...+3^118﴿ chia hết cho 13 c, A = 3+3^2 +3^3 + 3^4 +....+3^120 = ﴾3+3^2+3^3+3^4﴿+.....+﴾3^117+3^118+3^119+3^120﴿ = 3﴾1+3+3^2+3^3﴿ +...+3^117﴾ 1+3+3^2 +3^3﴿ = 3.40+ ...+3^117 .40 = 40 .﴾ 3+....+3^117﴿ chia hết cho 40

12 tháng 12 2016

b, A = 3+3^2 +3^3 +3^4 +....+3^120

       =(3+3^2+3^3)+......+(3^118+3^119+3^120)

       =3(1+3+3^2)+....+3^118(1+3+3^2)

        = 3.13+...+3^118. 13

        = 13( 3+...+3^118) chia hết cho 13

c, A = 3+3^2 +3^3 + 3^4 +....+3^120

       = (3+3^2+3^3+3^4)+.....+(3^117+3^118+3^119+3^120)

       = 3(1+3+3^2+3^3) +...+3^117( 1+3+3^2 +3^3)

       = 3.40+ ...+3^117 .40

      = 40 .( 3+....+3^117) chia hết cho 40

21 tháng 1 2021

                                                                          lg

a)C=3+3^2+3^3+...+3^100

=(3+3^2+3^3+3^4)+...+(3^96+3^97+3^98+3^99+3^100)

=(3.1+3.3+3.3^2+3.3^3)+...+(3^96.1+3^96.3+3^96.3^2+3^96.3^3)

=3.(1+3+3^2+3^3)+...+3^96.(1+3+3^2+3^3)

=3.40+...+3^96.40

=40.(3+...+3^96) chia hết cho 40

=>C chia hết cho 40

Vậy C chia hết cho 40

phần b làm tương tự

5 tháng 2 2021

a, sai đề 

b,Ta có :

C=2+2^2+2^3+2^4+2^5...+2^96+2^97+2^98+2^99+2^100

   = (2+2^2+2^3+2^4+2^5)+...+(2^96+2^97+2^98+2^99+2^100)

  = (2.1+2.2+2.2^2+2.2^3+2.2^4)+...+(2^96.1+2^96.2+2^96.2^2+2^96.2^3+2^96.2^4)

  =2. (1+2+2^2+2^3+2^4) +...+2^96.(1+2+2^2+2^3+2^4)

  =2.31+...+2^96.31

  =31. (2+...+2^96) chia hết cho 31

=>C chia hết cho 31

17 tháng 10 2016

a) C = 1 + 3 + 32 + 33 + ... + 311

C = ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 39 + 310 + 311 )

C = 13 + 33 . ( 1 + 3 + 32 ) + ... + 39 . ( 1 + 3 + 32 )

C = 13 + 33 . 13 + ... + 39 . 13

C = 13 . ( 1 + 33 + ... + 39 ) chia hết cho 13

b) C = 1 + 3 + 32 + 33 + ... + 311

C = ( 1 + 3 + 32 + 33 ) + ( 34 + 35 + 36 + 37 ) + ( 38 + 39 + 310 + 311 )

C = 40 + 34 . ( 1 + 3 + 32 + 33 ) + 38 . ( 1 + 3 + 3+ 33 )

C = 40 + 34 . 40 + 38 . 40

C = 40 . ( 1 +34 + 38 ) chia hết cho 40

17 tháng 10 2016

1e 5t 7u

29 tháng 11 2017

Đề bài là tìm n chứ:

a) Ta có:

\(n+5⋮n+2\)

\(\Rightarrow\left(n+2\right)+3⋮n+2\)

\(\Rightarrow3⋮n+2\)

\(\Rightarrow n+2\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+2=-1\Rightarrow n=-3\\n+2=1\Rightarrow n=-1\\n+2=-3\Rightarrow n=-5\\n+2=3\Rightarrow n=1\end{matrix}\right.\)

Vậy \(n\in\left\{-3;-1;-5;1\right\}\)

b) Ta có:

\(2n+1⋮n-5\)

\(\Rightarrow\left(2n-10\right)+11⋮n-5\)

\(\Rightarrow2\left(n-5\right)+11⋮n-5\)

\(\Rightarrow11⋮n-5\)

\(\Rightarrow n-5\in U\left(11\right)=\left\{-1;1;-11;11\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n-5=-1\Rightarrow n=4\\n-5=1\Rightarrow n=6\\n-5=-11\Rightarrow n=-6\\n-5=11\Rightarrow n=16\end{matrix}\right.\)

Vậy \(n\in\left\{4;6;-6;16\right\}\)

c) Ta có:

\(n^2+3n-13⋮n+3\)

\(\Rightarrow n\left(n+3\right)-13⋮n+3\)

\(\Rightarrow-13⋮n+3\)

\(\Rightarrow n+3\in U\left(13\right)=\left\{-1;1;-13;13\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+3=-1\Rightarrow n=-4\\n+3=1\Rightarrow n=-2\\n+3=-13\Rightarrow n=-16\\n+3=13\Rightarrow n=10\end{matrix}\right.\)

Vậy \(n\in\left\{-4;-2;-16;10\right\}\)