K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 6 2020

Bạn tham khảo:

Câu hỏi của khoimzx - Toán lớp 9 | Học trực tuyến

4 tháng 12 2018

\(A=\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\)

\(\Leftrightarrow2A=\dfrac{2a^2}{2a^2+bc}+\dfrac{2b^2}{2b^2+ac}+\dfrac{2c^2}{2c^2+ab}\)

\(=1-\dfrac{bc}{2a^2+bc}+1-\dfrac{ac}{2b^2+ac}+1-\dfrac{ab}{2c^2+ab}\)

\(=3-\dfrac{bc}{2a^2+bc}-\dfrac{ac}{2b^2+ac}-\dfrac{ab}{2c^2+ab}\)

CM: \(P=\dfrac{bc}{2a^2+bc}+\dfrac{ac}{2b^2+ac}+\dfrac{ab}{2c^2+ab}\ge1\)

Thật vậy:

\(P\ge\dfrac{\left(ab+bc+ac\right)^2}{2a^2bc+b^2c^2+2b^2ac+a^2c^2+2c^2ab+a^2b^2}\)

\(=\dfrac{\left(ab+bc+ac\right)^2}{a^2bc+a^2bc+b^2c^2+b^2ac+b^2ac+a^2c^2+c^2ab+c^2ab+a^2b^2}\)

\(=\dfrac{\left(ab+bc+ac\right)^2}{ab\left(ac+bc+ab\right)+bc\left(ab+bc+ac\right)+ac\left(ab+bc+ac\right)}\)

\(=1\)

\(2A=3-P\le3-1=2\)

\(2A\le2\Leftrightarrow A\le1\)

\("="\Leftrightarrow a=b=c\)

10 tháng 12 2018

Giả sử c là số ở giửa a và b. khi đó \(\left(b-c\right)\left(c-a\right)\ge0\)

Ta chứng minh :

\(VT\le c\left(\dfrac{b^2}{2b^2+a^2+c^2}+\dfrac{a^2}{2a^2+b^2+c^2}\right)+\dfrac{abc}{a^2+b^2+2c^2}\)(*)

\(\Leftrightarrow\dfrac{\left(c-a\right)\left(b-c\right)\left(b^2+c^2-bc+a^2\right)}{\left(a^2+c^2+2b^2\right)\left(b^2+a^2+2c^2\right)}\ge0\) (Đúng)

Áp dụng BĐT AM-GM:

\(VT\le\dfrac{c}{4}\left(\dfrac{b^2}{a^2+b^2}+\dfrac{b^2}{b^2+c^2}+\dfrac{a^2}{a^2+b^2}+\dfrac{a^2}{a^2+c^2}\right)+\dfrac{abc}{2ac+2bc}\)

\(\le\dfrac{c}{4}\left(1+\dfrac{b^2}{2bc}+\dfrac{a^2}{2ac}\right)+\dfrac{\dfrac{\left(a+b\right)^2}{4}}{2\left(a+b\right)}=\dfrac{c}{4}+\dfrac{a+b}{8}+\dfrac{a+b}{8}\)

\(=\dfrac{a+b+c}{4}\)( \(ĐpcM\))

Dấu = xảy ra khi a=b=c

11 tháng 12 2018

cảm ơn bạn !

15 tháng 8 2017

Áp dụng BĐT AM - GM, ta có:

\(a^2+2b^2+3\)

\(=\left(a^2+b^2\right)+\left(b^2+1\right)+2\)

\(\ge2ab+2b+2\)

Tương tự, ta có: \(b^2+2c^2+3\ge2bc+2c+2\)\(c^2+2a^2+3\ge2ac+2a+2\)

\(VT=\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\)

\(\le\dfrac{1}{2ab+2b+2}+\dfrac{1}{2bc+2c+2}+\dfrac{1}{2ac+2a+2}\)

\(=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ac+a+1}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{abc}{bc+c+abc}+\dfrac{abc}{ac+a^2bc+abc}\right)\) (Thay abc = 1)

\(=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{ab}{b+1+ab}+\dfrac{b}{1+ab+b}\right)\)

\(=\dfrac{1}{2}\times\dfrac{1+ab+b}{ab+b+1}\)

\(=\dfrac{1}{2}=VP\left(\text{đ}pcm\right)\)

Dấu "=" xảy ra khi a = b = c = 1

AH
Akai Haruma
Giáo viên
31 tháng 12 2016

BĐT 1 sai ngay với \(a=\sqrt{0,1},b=\sqrt{0,2},c=\sqrt{2,7}\)

BĐT 2 tương đương với đi chứng minh \(a^4b^4+b^4c^4+c^4a^4\geq 3a^2b^2c^2\)

Áp dụng BĐT AM-GM: \(a^4b^4+b^4c^4\geq 2a^2b^4c^2\)

Tương tự \(b^4c^4+c^4a^4\geq 2b^2c^4a^2,a^4b^4+c^4a^4\geq 2a^4b^2c^2\)

Cộng theo vế và rút gọn:

\(\Rightarrow a^4b^4+b^4c^4+c^4a^4\geq a^2b^2c^2(a^2+b^2+c^2)=3a^2b^2c^2\)

Do đó ta có đpcm. Dấu $=$ xảy ra khi $a=b=c=1$

1 tháng 1 2017

thì ra cái đầu sai nghĩ mãi ko ra, đại ca thông minh thật :v