Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a/
\(=\left(\frac{1}{\sqrt{x}+3}+\frac{3}{\sqrt{x}\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\left(\frac{x-3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}\right)\)
\(=\left(\frac{x-3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{x-3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)^2}\)
\(=\frac{x-3\sqrt{x}+3}{x\sqrt{x}-6\text{x}+9\sqrt{x}}\)
\(=\frac{x-3\sqrt{x}+3}{x\sqrt{x}-6\text{x}+9\sqrt{x}}\)
b/ Vậy để P>1 khi BT trên>1
Ta có phương trình tương đương
\(x-3\sqrt{x}+3-x\sqrt{x}+6\text{x}-9>0\)
\(-x\sqrt{x}+7\text{x}-3\sqrt{x}-6>0\)
Giải pt rồi suy ra
tick cho mình nha
![](https://rs.olm.vn/images/avt/0.png?1311)
các bn ơi đoạn sau mik viết nhầm đấy bỏ phần không có ngặc đi nha
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{x-4}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
\(\Leftrightarrow A=\frac{4\sqrt{x}\left(\sqrt{x}-2\right)-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow A=\frac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow A=\frac{-4x-8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\frac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow A=\frac{-4\sqrt{x}}{\sqrt{x}-2}\cdot\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}\)
\(\Leftrightarrow A=\frac{4x}{\sqrt{x}-3}\)
b) Để \(A=-1\)
\(\Leftrightarrow\frac{4x}{\sqrt{x}-3}=-1\)
\(\Leftrightarrow4x=3-\sqrt{x}\)
\(\Leftrightarrow4x+\sqrt{x}-3=0\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(4\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+1=0\\4\sqrt{x}-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-1\left(ktm\right)\\\sqrt{x}=\frac{3}{4}\Leftrightarrow x=\frac{9}{16}\left(tm\right)\end{cases}}\)
Vậy để \(A=-1\Leftrightarrow x=\frac{9}{16}\)
c) Khi \(x=36\)
\(\Leftrightarrow A=\frac{4\cdot36}{\sqrt{36}-3}=\frac{144}{3}=48\)
a) \(A=\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{x-4}\right):\left(\frac{\sqrt{x}-1}{\left(x-2\sqrt{x}\right)}-\frac{2}{\sqrt{x}}\right)\)
\(A=\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right)\)
\(A=\left(\frac{4\sqrt{x}\left(\sqrt{x}-2\right)-8x}{\left(\sqrt{x}+2\right)\left(x-2\right)}\right):\left(\frac{\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(A=\left(\frac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(A=\left(\frac{-8\sqrt{x}-4x}{\left(\sqrt{x}+2\right)\sqrt{x}}\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(A=\left(\frac{-4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)\sqrt{x}}\right).\left(\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\right)\)
\(A=\frac{-4\sqrt{x}\left(2-\sqrt{x}\right).\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(3-\sqrt{x}\right)}\)
\(A=\frac{-4\sqrt{x}\left(2-\sqrt{x}\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(3-\sqrt{x}\right)}\)
.......... Đến đây bạn tự nhân đa thức với đa thức xog rút gọn nha.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(P=\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}-1}-1\right)ĐK:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}.\)
\(=\left(\frac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\frac{\sqrt{x}-1}{\sqrt{x}-\sqrt{x}+1}\right)\)
=\(\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)
b)P=3/2 <=>\(\frac{2\sqrt{x}+1}{\sqrt{x}+1}=\frac{3}{2}\Leftrightarrow2\sqrt{x}+1=\frac{3}{2}\sqrt{x}+\frac{3}{2}.\)
\(\Leftrightarrow\frac{1}{2}\sqrt{x}=\frac{1}{2}\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
Với x=1 thoả nãm yêu cầu
![](https://rs.olm.vn/images/avt/0.png?1311)
B1:
\(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}\)
\(=\left|\sqrt{2}-\sqrt{3}\right|+3\sqrt{2}\)
\(=\sqrt{3}-\sqrt{2}+3\sqrt{2}\)
\(=\sqrt{3}+2\sqrt{2}\)
\(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(=\sqrt{4-4\sqrt{3}+3}+\left|1+\sqrt{3}\right|\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+1+\sqrt{3}\)
\(=2-\sqrt{3}+1+\sqrt{3}\)
\(=3\)
B2:
đk: \(x\ge-2\)
Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\frac{4}{5}\sqrt{25x+50}=6\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\)
\(\Leftrightarrow\sqrt{x+2}=3\)
\(\Leftrightarrow x+2=9\)
\(\Rightarrow x=7\)
Vậy x = 7
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\left(\sqrt{x}-\sqrt{y}\right)}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}-x+2\sqrt{xy}-y\)
\(=3\sqrt{xy}\)
b) \(\frac{x-y}{\sqrt{y}-1}.\sqrt{\frac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^4}}=\frac{x-y}{\sqrt{y}-1}.\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}=\frac{\left(x-y\right)\left(\sqrt{y}-1\right)}{\left(x-1\right)^2}\)
a) \(=\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=x+\sqrt{xy}+y-x+2\sqrt{xy}-y=3\sqrt{xy}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)