Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(a\ge0;a\ne1\)
\(P=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
\(=\left[\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right]\left[\dfrac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}+a\right)}{1+\sqrt{a}}\right]\)
\(=\left(1+2\sqrt{a}+a\right)\left(1-2\sqrt{a}+a\right)\)
\(=\left(1-a\right)^2\)
b) Để \(P< 7-4\sqrt{3}\)
\(\Rightarrow\left(1-a\right)^2< 7-4\sqrt{3}\)
\(\Leftrightarrow\left|1-a\right|< \left(2-\sqrt{3}\right)^2\)
\(\Leftrightarrow\sqrt{3}-2< a-1< 2-\sqrt{3}\)
\(\Leftrightarrow\sqrt{3}-1< a< 3-\sqrt{3}\)
Vậy \(\sqrt{3}-1< a< 3-\sqrt{3}\) thì \(P< 7-4\sqrt{3}\)
`a)P=((1-asqrta)/(1-sqrta)+sqrta).((1+asqrta)/(1+sqrta)-sqrta)`
`=(((1-sqrta)(a+sqrta+1))/(1-sqrta)+sqrta).(((1+sqrta)(a-sqrta+1))/(1+sqrta)-sqrta)`
`=(a+sqrta+1+sqrta)(a-sqrta+1-sqrta)`
`=(a+2sqrta+1)(a-2sqrta+1)`
`=(sqrta+1)^2(sqrta-1)^2`
`=(a-1)^2`
`b)a<7-4sqrt3`
`<=>(a-1)^2<(2-sqrt3)^2`
`<=>sqrt3-2<a-1<2-sqrt3`
`<=>sqrt3-1<a<3-sqrt3`
ĐKXĐ: \(x>0;x\ne1\)
\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)
b.
\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)
\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)
c.
Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)
Ta có:
\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)
Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)
Ta có: \(A=\left(\dfrac{\sqrt{x}+1}{x+1}-\dfrac{4-3\sqrt{x}}{x-4\sqrt{x}+4}\right):\left(\dfrac{x-\sqrt{x}}{x\sqrt{x}-2x+\sqrt{x}-2}\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(x-4\sqrt{x}+4\right)+\left(3\sqrt{x}-4\right)\left(x+1\right)}{\left(x+1\right)\left(\sqrt{x}-2\right)^2}:\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-2\right)\left(x+1\right)}\)
\(=\dfrac{x\sqrt{x}-4x+4\sqrt{x}+x-4\sqrt{x}+4+3x\sqrt{x}+3\sqrt{x}-4x-4}{\left(x+1\right)\left(\sqrt{x}-2\right)^2}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(x+1\right)}{x-\sqrt{x}}\)
\(=\dfrac{4x\sqrt{x}-7x+3\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\cdot\left(4\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4\sqrt{x}-3}{\sqrt{x}-2}\)
Để A>1 thì A-1>0
\(\Leftrightarrow\dfrac{4\sqrt{x}-3-\sqrt{x}+2}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\dfrac{3\sqrt{x}-1}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x}-1\le0\\\sqrt{x}-2>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0< x\le\dfrac{1}{9}\\x>4\end{matrix}\right.\)
\(a,\) Rút gọn
\(A=\dfrac{3}{\sqrt{7}-2}+\sqrt{\left(\sqrt{7}-3\right)^2}\)
\(=\dfrac{3}{\sqrt{7}-2}+\left|\sqrt{7}-3\right|\)
\(=\dfrac{3}{\sqrt{7}-2}+3-\sqrt{7}\)
\(=\dfrac{3+\left(3-\sqrt{7}\right)\left(\sqrt{7}-2\right)}{\sqrt{7}-2}\)
\(=\dfrac{3+3\sqrt{7}-6-7+2\sqrt{7}}{\sqrt{7}-2}\)
\(=\dfrac{5\sqrt{7}-10}{\sqrt{7}-2}\)
\(=\dfrac{5\left(\sqrt{7}-2\right)}{\sqrt{7}-2}\)
\(=5\)
Vậy \(A=5\)
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-1}\left(dkxd:x\ge0,x\ne1\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\dfrac{x-1}{\sqrt{x}+1}\right)\)
\(=\dfrac{\sqrt{x}.\sqrt{x}-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\dfrac{x-\sqrt{x}}{x-\sqrt{x}}.\left(\sqrt{x}-1\right)\)
\(=\sqrt{x}-1\)
Vậy \(B=\sqrt{x}-1\)
\(b,\) Để \(B< A\) thì \(\sqrt{x}-1< 5\)
\(\Leftrightarrow\sqrt{x}< 6\)
\(\Leftrightarrow x< 36\)
a) ĐKXĐ: \(a>1;a\ne-1\)
\(B=\left(\dfrac{3}{\sqrt{1+a}}+\dfrac{\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}\right):\dfrac{3+\sqrt{1-a^2}}{\sqrt{1-a^2}}\)
\(\Leftrightarrow B=\dfrac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}.\dfrac{\sqrt{1+a}.\sqrt{1-a}}{3+\sqrt{1+a}.\sqrt{1-a}}\)
\(\Leftrightarrow B=\sqrt{1-a}\)
b) Thay a=\(\dfrac{\sqrt{3}}{2+\sqrt{3}}\) vào B ta được:
\(B=\sqrt{1-\dfrac{\sqrt{3}}{2+\sqrt{3}}}\)
\(\Leftrightarrow B\) \(=\sqrt{\dfrac{2+\sqrt{3}-\sqrt{3}}{2+\sqrt{3}}}\)
\(\Leftrightarrow B\) \(=\sqrt{\dfrac{2}{2+\sqrt{3}}}\)
\(\Leftrightarrow B\)\(=\sqrt{\dfrac{4}{4+2\sqrt{3}}}\) \(\Leftrightarrow B\) \(=\dfrac{\sqrt{4}}{\sqrt{3+2\sqrt{3}+1}}\)
\(\Leftrightarrow B=\dfrac{2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\) \(\Leftrightarrow B=\dfrac{2}{\sqrt{3}+1}=\dfrac{2.\left(\sqrt{3}-1\right)}{3-1}=\sqrt{3}-1\)
c) Có \(\sqrt{B}>B\) \(\Leftrightarrow\sqrt{\sqrt{1-a}}>\sqrt{1-a}\)
\(\Leftrightarrow\sqrt{1-a}>1-a\)
\(\Leftrightarrow\sqrt{1-a}-\left(1-a\right)>0\)
\(\Leftrightarrow\sqrt{1-a}.\left(1-\sqrt{1-a}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{1-a}>0\\1-\sqrt{1-a}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{1-a}< 0\\1-\sqrt{1-a}< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a< 1\\a>0\end{matrix}\right.\\\left\{{}\begin{matrix}a>1\\a< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}0< a< 1\\a>1;a< 0\end{matrix}\right.\)
a: Ta có: \(A=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)\cdot\dfrac{x-4}{3\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{x-4}{3\sqrt{x}}\)
\(=\dfrac{2}{3}\)
a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\dfrac{8}{\sqrt{x}-3}\)
b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)
\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)
Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)
\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)
a) Điều kiện: \(a\ge0;a\ne1\)
\(P=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\\ =\left(\dfrac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{\left(1+\sqrt{a}\right)\left(a-\sqrt{a}+1\right)}{1+\sqrt{a}}-\sqrt{a}\right)\\ =\left(a+2\sqrt{a}+1\right)\left(a-2\sqrt{a}+1\right)\\ =\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)^2\\ =\left(a-1\right)^2\)
b) Để \(P< 7-4\sqrt{3}\Rightarrow P< \left(2-\sqrt{3}\right)^2\Rightarrow\left(a-1\right)^2< \left(2-\sqrt{3}\right)^2\)
\(\Rightarrow-\left(2-\sqrt{3}\right)< a-1< 2-\sqrt{3}\)
\(\Rightarrow\sqrt{3}-1< a< 3-\sqrt{3}\) (Thỏa mãn)