\(P=\frac{x+y}{x+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{z+y}\) P=?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2016

từ biểu thức đã cho , ta thấy các phân số bằng nhau . 

Có 2 dạng bằng nhau :

- cũng mẫu và tử 

- nhân hay chia mẫu và tử cho một số thì được phân số đã cho 

Nếu ta lấy cách 1 , cũng mẫu và tử thì có :

y = z = t = x 

Vậy có biểu thức phía dưới bằng :

1 + 1 + 1 + 1 = 4 

Vậy theo cách là các phân số này cùng có mẫu và tử giống nhau thì phân số này bằng 4

còn theo cách kia tớ không biết giải

12 tháng 11 2016

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(=\frac{x+y+z+t}{y+z+t+z+t+x+t+x+y+x+y+z}=\frac{x+y+z+t}{3x+3y+3z+3t}\)

\(=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)

\(\Rightarrow x=y=z=t\)

\(=\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{x+y}+\frac{x+t}{x+z}=\frac{x+x}{x+x}+\frac{y+y}{y+y}+\frac{z+z}{z+z}+\frac{t+t}{t+t}=4\)

5 tháng 9 2017

vì sao x=y=z=t

+) TH1: Nếu x + y + t + z ≠ 0

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

xy+z+t=yx+z+t=zx+y+t=tx+y+z=x+y+z+ty+z+t+x+z+t+x+y+t+x+y+z=13xy+z+t=yx+z+t=zx+y+t=tx+y+z=x+y+z+ty+z+t+x+z+t+x+y+t+x+y+z=13

=> 3x = y + z + t => 4x = x + y + z + t (1)

3y = x + z + t 4y = x + y + z + t (2)

3z = x + y + t 4z = x + y + z + t (3)

3t = x + y + z 4t = x + y + z + t (4)

Từ (1)(2)(3)(4) => x = y = z = t

⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=1+1+1+1=4⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=1+1+1+1=4

+) TH2: Nếu x + y + z + t = 0

=> x + y = -(z + t)

y + z = -(x + t)

t + z = -(x + y)

t + x = -(y + z)

⇒x+yz+t=y+zt+x=z+tx+y=t+xy+z=−1⇒x+yz+t=y+zt+x=z+tx+y=t+xy+z=−1

⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=(−1)+(−1)+(−1)+(−1)=−4

Mk nhĩ bn chép sai đề. Phải là \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}\)chứ!!! Sao lại là + ???!!!!

30 tháng 12 2017

Nếu x+y+z+t = 0 => x+y = -(z+t) ; y+z = -(x+t) ; z+t = -(y+x) ; t+x = -(z+y)

=> Biểu thức = -1-1-1-1 = -4

Nếu x+y+z+t khác 0 thì :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

x/y+z+t = y/z+t+x = z/t+x+y = t/x+y+z = x+y+z+t/3x+3y+3z+3t = 1/3

=> x=1/3.(y+z+t) ; y = 1/3.(z+t+x) ; z = 1/3.(t+x+y) ; t = 1/3.(x+y+z)

=> x=y=z=t

=> A = 1+1+1+1 = 1

Vậy ...........

k mk nha

30 tháng 12 2017

có ghi ngược đề không vậy ạ? :>

25 tháng 1 2017

Ta có

\(\frac{2x+y+z+t}{x}=\frac{x+2y+z+t}{y}=\frac{x+y+2z+t}{z}=\frac{x+y+z+2t}{t}\)

\(\Rightarrow1+\frac{x+y+z+t}{x}=1+\frac{x+y+z+t}{y}=1+\frac{x+y+z+t}{z}=1+\frac{x+y+z+t}{t}\)

\(\Rightarrow\frac{x+y+z+t}{x}=\frac{x+y+z+t}{y}=\frac{x+y+z+t}{z}=\frac{x+y+z+t}{t}\)

Xét 2 trường hợp

Nếu \(x+y+z+t=0\)

\(\Rightarrow\left\{\begin{matrix}x+y=-z-t\\y+z=-t-x\\t+x=-y-z\\z+t=-x-y\end{matrix}\right.\)

Ta có \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)

\(=\frac{-z-t}{z+t}+\frac{-t-x}{t+x}+\frac{-x-y}{x+y}+\frac{-y-z}{y+z}\)

\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)

\(=\left(-4\right)\)

Nếu \(x=y=z=t\)

Ta có \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)

\(=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}\)

\(=1+1+1+1\)

\(=4\)

25 tháng 1 2017

Cảm ơn ^.^

6 tháng 11 2017

TA CỘNG 1 VÀO ĐẲNG THỨC TRÊN

\(\Rightarrow\)X=Y=Z=T

VẬY A=4 ;-1

6 tháng 11 2017

A = { 4 ; -1 }

k cho mk nha