Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)\(=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1\)
\(=a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\).
Ta có \(D=a-\sqrt{a}=a-2.\frac{1}{2}.\sqrt{a}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\)\(=\left(a-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\).
Vậy GTNN của \(D=-\frac{1}{4}\) khi \(\left(a-\frac{1}{2}\right)^2=0\Leftrightarrow a=\frac{1}{2}\).
\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(A=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(A=\sqrt{a}\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\)
\(A=a+\sqrt{a}-2\sqrt{a}-1+1\)
\(A=a-\sqrt{a}\)
a) ĐKXĐ: thỏa mãn với mọi a thực
b) ĐKXĐ: \(\frac{1}{2a+1}>0\)
\(\Rightarrow2a+1>0\Rightarrow2a>-1\Leftrightarrow a>-\frac{1}{2}\)
c) ĐKXĐ: \(a\left(1-a\right)\ge0\)
+ Nếu: \(\hept{\begin{cases}a\ge0\\1-a\ge0\end{cases}}\Leftrightarrow1\ge a\ge0\)
+ Nếu: \(\hept{\begin{cases}a\le0\\1-a\le0\end{cases}\Rightarrow}\hept{\begin{cases}a\le0\\a\ge1\end{cases}}\)(vô lý)
Vậy \(0\le a\le1\)
d) ĐKXĐ: \(\frac{2}{\left(a-2\right)\left(a+3\right)}>0\)
\(\Rightarrow\left(a-2\right)\left(a+3\right)>0\)
+ Nếu: \(\hept{\begin{cases}a-2>0\\a+3>0\end{cases}}\Rightarrow a>2\)
+ Nếu: \(\hept{\begin{cases}a-2< 0\\a+3< 0\end{cases}}\Rightarrow a< -3\)
Vậy \(\orbr{\begin{cases}a>2\\a< -3\end{cases}}\)
Để biểu thức có nghĩa thì :
\(\sqrt{4+a^2}\left(đk:\forall a-tmđk\right)\)
\(\sqrt{\frac{1}{2a+1}}\left(đk:a\ne-\frac{1}{2};a\ge-\frac{1}{2}\Leftrightarrow a>-\frac{1}{2}\right)\)
\(\sqrt{a\left(1-a\right)}\left(đk:a\ge0\right)\)
\(\sqrt{\frac{2}{\left(a-2\right)\left(a+3\right)}}\left(đk:a\ge2;a\ne2\Leftrightarrow a>2\right)\)
a/ Điều kiện \(\hept{\begin{cases}a\ge0\\a\ne\frac{1}{9}\end{cases}}\) \(\Rightarrow0\le a\ne\frac{1}{9}\)
b/ \(M=\left(\frac{2\sqrt{a}}{3\sqrt{a}+1}+\frac{\sqrt{a}-2}{1-3\sqrt{a}}-\frac{5\sqrt{a}+3}{9a-1}\right):\left(a-\frac{2\sqrt{a}-6}{3\sqrt{a}-1}\right)\)
\(=\frac{2\sqrt{a}\left(1-3\sqrt{a}\right)+\left(\sqrt{a}-2\right)\left(1+3\sqrt{a}\right)+5\sqrt{a}+3}{\left(1-3\sqrt{a}\right)\left(1+3\sqrt{a}\right)}:\left(\frac{3a\sqrt{a}-2\sqrt{a}+6-a}{3\sqrt{a}-1}\right)\)
\(=\frac{2\sqrt{a}-6a+\sqrt{a}+3a-2-6\sqrt{a}+5\sqrt{a}+3}{\left(1-3\sqrt{a}\right)\left(1+3\sqrt{a}\right)}.\left(\frac{3\sqrt{a}-1}{3a\sqrt{a}-2\sqrt{a}+6-a}\right)\)
\(=\frac{3a-2\sqrt{a}-1}{1+3\sqrt{a}}.\frac{1}{3a\sqrt{a}-2\sqrt{a}+6-a}\)
\(=\frac{\left(3\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{1+3\sqrt{a}}.\frac{1}{3a\sqrt{a}-2\sqrt{a}+6-a}\)
\(=\frac{\sqrt{a}-1}{3a\sqrt{a}-2\sqrt{a}+6-a}\)
Hình như đề sai rồi bạn :(
a/ Điều kiện xác định : \(\hept{\begin{cases}a\ge0\\a\ne9\end{cases}\Leftrightarrow}0\le a\ne9\)
b/ \(M=\left(\frac{2\sqrt{a}}{3\sqrt{a}+1}+\frac{\sqrt{a}-2}{1-3\sqrt{a}}-\frac{5\sqrt{a}+3}{9a-1}\right):\left(1-\frac{2\sqrt{a}-6}{3\sqrt{a}-1}\right)\)
\(=\frac{2\sqrt{a}\left(3\sqrt{a}-1\right)+\left(2-\sqrt{a}\right)\left(3\sqrt{a}+1\right)-5\sqrt{a}-3}{\left(3\sqrt{a}+1\right)\left(3\sqrt{a}-1\right)}:\frac{\sqrt{a}+5}{3\sqrt{a}-1}\)
\(=\frac{6a-2\sqrt{a}+6\sqrt{a}+2-3a-\sqrt{a}-5\sqrt{a}-3}{\left(3\sqrt{a}+1\right)\left(3\sqrt{a}-1\right)}.\frac{3\sqrt{a}-1}{\sqrt{a}+5}\)
\(=\frac{3a-2\sqrt{a}-1}{3\sqrt{a}+1}.\frac{1}{\sqrt{a}+5}\)
\(=\frac{\left(3\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(3\sqrt{a}+1\right)\left(\sqrt{a}+5\right)}=\frac{\sqrt{a}-1}{\sqrt{a}+5}\)
c/ \(a=9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\) thay vào M được
\(\frac{\sqrt{5}-2-1}{\sqrt{5}-2+5}=\frac{\sqrt{5}-3}{\sqrt{5}+3}=\frac{-7+3\sqrt{5}}{2}\)
d/ \(M=\frac{\sqrt{a}-1}{\sqrt{a}+5}=\frac{\sqrt{a}+5-6}{\sqrt{a}+5}=1-\frac{6}{\sqrt{a}+5}\)
Với mọi \(0\le a\ne9\) thì ta luôn có \(\sqrt{a}+5\ge5\Leftrightarrow\frac{6}{\sqrt{a}+5}\le\frac{6}{5}\Leftrightarrow-\frac{6}{\sqrt{a}+5}\ge-\frac{6}{5}\Leftrightarrow1-\frac{6}{\sqrt{a}+5}\ge1-\frac{6}{5}\)
\(\Rightarrow M\ge-\frac{1}{5}\)
Đẳng thức xảy ra khi a = 0
Vậy giá trị nhỏ nhất của M bằng \(-\frac{1}{5}\) khi a = 0