Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
ĐKXĐ: x<>2
|2x-3|=1
=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Thay x=1 vào A, ta được:
\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)
b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)
\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)
\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)
c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)
\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)
Để P lớn nhất thì \(\dfrac{2}{x-2}\) max
=>x-2=1
=>x=3(nhận)
a: ĐKXĐ: x<>2; x<>-2
b: \(A=\dfrac{3x\left(x-2\right)+2x+6}{2\left(x-2\right)\left(x+2\right)}=\dfrac{3x^2-6x+2x+6}{2\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{3x^2+4x+6}{2\left(x-2\right)\left(x+2\right)}\)
c: Khi x=-3 thì \(A=\dfrac{3\cdot\left(-3\right)^2-4\cdot3+6}{2\left(-3-2\right)\left(-3+2\right)}=\dfrac{21}{10}\)
Bài 2:
a: ĐKXĐ: \(x\notin\left\{0;2;-2;3\right\}\)\(A=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right):\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)
\(=\dfrac{-4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{x-3}\)
\(=\dfrac{-4x\left(x+2\right)}{x+2}\cdot\dfrac{-x}{x-3}=\dfrac{4x^2}{x-3}\)
b: Để A>0 thì x-3>0
hay x>3
Đề bài sai rồi bạn ! Mình sửa :
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)
b) \(P=\left(\frac{x-1}{x+1}-\frac{x+1}{x-1}\right):\frac{2x}{3x-3}\)
\(\Leftrightarrow P=\frac{\left(x-1\right)^2-\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)
\(\Leftrightarrow P=\frac{x^2-2x+1-x^2-2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)
\(\Leftrightarrow P=\frac{-4x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)
\(\Leftrightarrow P=\frac{-6}{x+1}\)
c) Để P nhận giá trị nguyên
\(\Leftrightarrow\frac{-6}{x+1}\inℤ\)
\(\Leftrightarrow x+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;-3;1;-4;2;-7;5\right\}\)
Ta loại các giá trị ktm
\(\Leftrightarrow x\in\left\{-2;-3;-4;2;-7;5\right\}\)
Vậy để \(P\inℤ\Leftrightarrow x\in\left\{-2;-3;-4;2;-7;5\right\}\)
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
a: \(B=\dfrac{10x}{\left(x+4\right)\left(x-1\right)}-\dfrac{2x-3}{x+4}-\dfrac{x+1}{x-1}\)
\(=\dfrac{10x-\left(2x^2-2x-3x+3\right)-\left(x^2+5x+4\right)}{\left(x+4\right)\left(x-1\right)}\)
\(=\dfrac{10x-2x^2+5x-3-x^2-5x-4}{\left(x+4\right)\left(x-1\right)}\)
\(=\dfrac{-3x^2+10x-7}{\left(x+4\right)\left(x-1\right)}\)
\(=\dfrac{-\left(3x^2-10x+7\right)}{\left(x-1\right)\left(x+4\right)}=-\dfrac{\left(x-1\right)\left(3x-7\right)}{\left(x-1\right)\left(x+4\right)}\)
\(=\dfrac{-3x+7}{x+4}\)
b: \(B+3=\dfrac{-3x+7+3x+12}{x+4}=\dfrac{19}{x+4}>0\)
=>B>-3