\(\sqrt[4]{\left(x-1\right)\left(3-x\right)}\le x^2-2x+m-3\) Xác định m để BPT ng...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 5 2020

\(\Leftrightarrow-x^2+2x+3+4\sqrt{-x^2+2x+3}\le m\)

Đặt \(\sqrt{-x^2+2x+3}=\sqrt{4-\left(x-1\right)^2}=t\Rightarrow0\le t\le2\)

BPT trở thành:

\(f\left(t\right)=t^2+4t\le m\)

Để BPT nghiệm đúng với mọi \(t\in\left[0;2\right]\)

\(\Leftrightarrow m\ge\max\limits_{\left[0;2\right]}f\left(t\right)=12\)

\(\Rightarrow m\ge12\)

Câu 1:

\(\Leftrightarrow\left\{{}\begin{matrix}13x>\dfrac{7}{3}\\4x-16< 3x-14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{39}\\x< 2\end{matrix}\right.\Leftrightarrow\dfrac{7}{39}< x< 2\)

mà x nguyên

nên x=1

Câu 2: 

\(\Leftrightarrow\left\{{}\begin{matrix}2x< 4\\mx>2-m\end{matrix}\right.\)

=>x<2 và mx>2-m

Nếu m=0 thì bất phươg trình vô nghiệm

Nếu m<>0 thì BPT sẽ tương đương với:

\(\left\{{}\begin{matrix}x< 2\\x>\dfrac{2-m}{m}\end{matrix}\right.\)

Để BPT vô nghiệm thì 2-m/m>=2

=>\(\dfrac{2-m}{m}-2>=0\)

=>\(\dfrac{2-m-2m}{m}>=0\)

=>\(\dfrac{3m-2}{m}< =0\)

=>0<m<=2/3

NV
23 tháng 5 2020

a/ Do \(a=2>0\) nên BPT đã cho có nghiệm với mọi m

b/

- Với \(m\le1\) BPT luôn có nghiệm

- Với \(m>1\) để BPT có nghiệm

\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m-1\right)\left(-m+2\right)\ge0\)

\(\Leftrightarrow2m^2+3m+11\ge0\)

\(\Leftrightarrow2\left(m+\frac{3}{4}\right)^2+\frac{79}{8}\ge0\) (luôn đúng)

Vậy BPT đã cho có nghiệm với mọi m

11 tháng 4 2020

a/ \(2x^3+x+3>0\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)>0\Leftrightarrow x+1>0\) \(\left(x^2-2x+3>0\forall x\in R\right)\)

\(\Leftrightarrow x>-1\)

Nghiệm của $VT(*)$ là $S=(-1;+\infty)$

b/ \(x^2\left(x^2+3x-4\right)\ge0\) $(*)$

$VT(*) có nghiệm kép là $0$ và nghiệm đơn là $1;-4$. Ta có BXD:

- + -4 0 1 + - - + 0 0 0 x VT(*)

Từ BXD suy ra bất phương trình có tập nghiệm $S={0} \cup (-\infty;-4] \cup [1;+\infty)$

11 tháng 4 2020

Khách? Khi mà